Spin-mediated shear oscillators in a van der Waals antiferromagnet

0
20


  • Einstein, A. & & de Haas, W. J. Experimenteller Nachweis der Ampèreschen Molekularströme. Verh. Dtsch. Phys. Ges. 17, 152– 170 (1915 ).


    Google Scholar

  • Baibich, M. N. et al. Large magnetoresistance of (001 )Fe/( 001 )Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Jin, S. et al. Thousandfold adjustment in resistivity in magnetoresistive La-Ca-Mn-O movies. Scientific Research 264, 413– 415 (1994 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Chang, C.-Z. et al. Speculative monitoring of the quantum strange Hall result in a magnetic topological insulator. Scientific Research 340, 167– 170 (2013 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Spaldin, N. A. & & Ramesh, R. Advancements in magnetoelectric multiferroics. Nat. Mater. 18, 203– 212 (2019 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Dornes, C. et al. The ultrafast Einstein– de Haas result. Nature 565, 209– 212 (2019 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Tauchert, S. R. et al. Polarized phonons lug angular energy in ultrafast demagnetization. Nature 602, 73– 77 (2022 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Number, J. S. et al. Electromechanical resonators from graphene sheets. Scientific Research 315, 490– 493 (2007 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Chen, C. et al. Graphene mechanical oscillators with tunable regularity. Nat. Nanotechnol. 8, 923– 927 (2013 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Kirilyuk, A., Kimel, A. V. & & Rasing, T. Ultrafast optical adjustment of magnetic order. Rev. Mod. Phys. 82, 2731 (2010 ).

    Article
    ADS

    Google Scholar

  • Schlauderer, S. et al. Temporal as well as spooky finger prints of ultrafast all-coherent spin changing. Nature 569, 383– 387 (2019 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • McLeod, A. S. et al. Multi-messenger nanoprobes of surprise magnetism in a stretched manganite. Nat. Mater. 19, 397– 404 (2020 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Disa, A. S. et al. Photo-induced high-temperature ferromagnetism in YTiO 3 Nature 617, 73– 78 (2023 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Mak, K. F., Shan, J. & & Ralph, D. C. Penetrating as well as managing magnetic states in 2D split magnetic products. Nat. Rev. Phys. 1, 646– 661 (2019 ).

    Article

    Google Scholar

  • Gibertini, M., Koperski, M., Morpurgo, A. F. & & Novoselov, K. S. Magnetic 2D products as well as heterostructures. Nat. Nanotechnol. 14, 408– 419 (2019 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Huang, B. et al. Rising sensations as well as closeness impacts in two-dimensional magnets as well as heterostructures. Nat. Mater. 19, 1276– 1289 (2020 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Jiang, S., Xie, H., Shan, J. & & Mak, K. F. Exchange magnetostriction in two-dimensional antiferromagnets. Nat. Mater. 19, 1295– 1299 (2020 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Šiškins, M. et al. Magnetic as well as digital stage shifts penetrated by nanomechanical resonators. Nat. Commun. 11, 2698 (2020 ).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Windsor, Y. W. et al. Exchange-striction driven ultrafast nonthermal latticework characteristics in NiO. Phys. Rev. Lett. 126, 147202 (2021 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Zhang, X.-X. et al. Rotate characteristics downturn near the antiferromagnetic crucial point in atomically slim FePS 3 Nano Lett. 21, 5045– 5052 (2021 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Zhang, Q. et al. Monitoring of large optical direct dichroism in a zigzag antiferromagnet FePS 3 Nano Lett. 21, 6938– 6945 (2021 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Thielemann-Kühn, N. et al. Ultrafast as well as energy-efficient quenching of spin order: antiferromagnetism defeats ferromagnetism. Phys. Rev. Lett. 119, 197202 (2017 ).

    Article
    ADS
    PubMed

    Google Scholar

  • Kang, S. et al. Meaningful many-body exciton in van der Waals antiferromagnet NiPS 3 Nature 583, 785– 789 (2020 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Hwangbo, K. et al. Very anisotropic excitons as well as several phonon bound states in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol. 16, 655– 660 (2021 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Belvin, C. A. et al. Exciton-driven antiferromagnetic steel in an associated van der Waals insulator. Nat. Commun. 12, 4837 (2021 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zhou, F. et al. Dynamical urgency of spin-shear combining in van der Waals antiferromagnets. Nat. Commun. 13, 6598 (2022 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Ergeçen, E. et al. Meaningful discovery of surprise spin– latticework combining in a van der Waals antiferromagnet. Proc. Natl Acad. Sci. U.S.A. 120, e2208968120 (2023 ).

    Article
    PubMed

    Google Scholar

  • Kurosawa, K., Saito, S. & & Yamaguchi, Y. Neutron diffraction research on MnPS 3 as well as FePS 3 J. Phys. Soc. Jpn 52, 3919– 3926 (1983 ).

    Article
    ADS
    CAS

    Google Scholar

  • Lançon, D. et al. Magnetic framework as well as magnon characteristics of the quasi-two-dimensional antiferromagnet FePS 3 Phys. Rev. B 94, 214407 (2016 ).

    Article
    ADS

    Google Scholar

  • Jernberg, P., Bjarman, S. & & Wäppling, R. FePS 3: a first-order stage shift in a “2D” Ising antiferromagnet. J. Magn. Magn. Mater. 46, 178– 190 (1984 ).

    Article
    ADS
    CAS

    Google Scholar

  • Murayama, C. et al. Crystallographic attributes associated with a van der Waals combining in the split chalcogenide FePS 3 J. Appl. Phys. 120, 142114 (2016 ).

    Article
    ADS

    Google Scholar

  • Liu, S. et al. Straight monitoring of magnon-phonon solid combining in two-dimensional antiferromagnet at high electromagnetic fields. Phys. Rev. Lett. 127, 097401 (2021 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Vaclavkova, D. et al. Magnon polarons in the van der Waals antiferromagnet FePS 3 Phys. Rev. B 104, 134437 (2021 ).

    Article
    ADS
    CAS

    Google Scholar

  • Nakamura, A. et al. Assessment of photo-induced shear pressure in monoclinic VTe 2 by ultrafast electron diffraction. Appl. Phys. Express 11, 092601 (2018 ).

    Article
    ADS

    Google Scholar

  • Qian, Q. et al. Meaningful latticework tottering as well as out-of-phase strength oscillations of Friedel sets observed by ultrafast electron diffraction. ACS Nano 14, 8449– 8458 (2020 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Zeiger, H. J. et al. Concept for displacive excitation of meaningful phonons. Phys. Rev. B 45, 768 (1992 ).

    Article
    ADS
    CAS

    Google Scholar

  • Sie, E. J. et al. An ultrafast proportion button in a Weyl semimetal. Nature 565, 61– 66 (2019 ).

  • Park, H. S., Baskin, J. S., Barwick, B., Kwon, O.-H. & & Zewail, A. H. 4D ultrafast electron microscopy: imaging of atomic activities, acoustic vibrations, as well as moiré edge characteristics. Ultramicroscopy 110, 7– 19 (2009 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Lahme, S., Kealhofer, C., Krausz, F. & & Baum, P. Femtosecond single-electron diffraction. Struct. Dyn. 1, 034303 (2014 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Nie, S., Wang, X., Park, H., Clinite, R. & & Cao, J. Dimension of the digital Gruneisen constant making use of femtosecond electron diffraction. Phys. Rev. Lett. 96, 025901 (2006 ).

    Article
    ADS
    PubMed

    Google Scholar

  • Pezeril, T. [INVITED] Laser generation as well as discovery of ultrafast shear acoustic waves in solids as well as fluids. Opt. Laser Technol. 83, 177– 188 (2016 ).

    Article
    ADS
    CAS

    Google Scholar

  • Juvé, V. et al. Ultrafast light-induced shear pressure penetrated by time-resolved x-ray diffraction: multiferroic BiFeO 3 as a study. Phys. Rev. B 102, 220303 (2020 ).

    Article
    ADS

    Google Scholar

  • Mertins, H.-C. et al. Monitoring of the x-ray magneto-optical Voigt result. Phys. Rev. Lett. 87, 047401 (2001 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Feist, A., Rubiano da Silva, N., Liang, W., Ropers, C. & & Schäfer, S. Nanoscale diffractive penetrating of pressure characteristics in ultrafast transmission electron microscopy. Struct. Dyn. 5, 014302 (2018 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Cheng, R., Wu, X. & & Xiao, D. Spin-mechanical inertia in antiferromagnets. Phys. Rev. B 96, 054409 (2017 ).

    Article
    ADS

    Google Scholar

  • Zhang, Y. & & Flannigan, D. J. Imaging nanometer phonon softening at crystal surface area actions with 4D ultrafast electron microscopy. Nano Lett. 21, 7332– 7338 (2021 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Bie, Y.-Q., Zong, A., Wang, X., Jarillo-Herrero, P. & & Gedik, N. A functional example construction technique for ultrafast electron diffraction. Ultramicroscopy 230, 113389 (2021 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Zong, A. in Emergent States in Photoinduced Charge-Density-Wave Transitions 69– 103 (Springer, 2021).

  • Weathersby, S. et al. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Lab. Rev. Sci. Instrum. 86, 073702 (2015 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Shen, X. et al. Femtosecond mega-electron-volt electron microdiffraction. Ultramicroscopy 184, 172– 176 (2018 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Liu, H. et al. Visualization of plasmonic combinings making use of ultrafast electron microscopy. Nano Lett. 21, 5842– 5849 (2021 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Toby, B. H. & & Von Dreele, R. B. GSAS-II: the genesis of a contemporary open-source all objective crystallography software. J. Appl. Crystallogr. 46, 544– 549 (2013 ).

    Article
    CAS

    Google Scholar

  • Zhu, P. et al. Femtosecond time-resolved MeV electron diffraction. New J. Phys. 17, 063004 (2015 ).

    Article
    ADS

    Google Scholar

  • Williams, D. B. & & Carter, C. B. in Transmission Electron Microscopy: A Book for Products Scientific Research 407– 417 (Springer, 2009).

  • Cremons, D. R., Plemmons, D. A. & & Flannigan, D. J. Femtosecond electron imaging of defect-modulated phonon characteristics. Nat. Commun. 7, 11230 (2016 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Fultz, B. & & Howe, J. M. in Transmission Electron Microscopy as well as Diffractometry of Products 225– 274 (Springer, 2002).

  • Zhang, J.-m, Nie, Y.-z, Wang, X.-g, Xia, Q.-l & & Guo, G.-h. Pressure inflection of magnetic residential or commercial properties of monolayer as well as bilayer FePS 3 antiferromagnet. J. Magn. Magn. Mater. 525, 167687 (2021 ).

    Article
    CAS

    Google Scholar

  • Tinnemann, V. et al. Ultrafast electron diffraction from a Bi( 111) surface area: spontaneous latticework excitation as well as Debye– Waller evaluation at big energy transfer. Struct. Dyn. 6, 035101 (2019 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Pleasure, P. A. & & Vasudevan, S. Optical-absorption ranges of the split transition-metal thiophosphates M PS 3 ( M= Mn, Fe, as well as Ni). Phys. Rev. B 46, 5134 (1992 ).

    Article
    ADS
    CAS

    Google Scholar

  • Khumalo, F. S. & & Hughes, H. P. Reflectance ranges of some FePS 3– kind layer substances in the vacuum cleaner ultraviolet. Phys. Rev. B 23, 5375 (1981 ).

    Article
    ADS
    CAS

    Google Scholar

  • Dressel, M. & & Grüner, G. Electrodynamics of Solids: Optical Feature of Electrons in Issue (Cambridge Univ. Press, 2002 ).

  • Piacentini, M., Khumalo, F., Leveque, G., Olson, C. & Lynch, D. X-ray photoemission as well as optical ranges of NiPS 3, FePS 3 as well as ZnPS 3 Chem. Phys. 72, 61– 71 (1982 ).

    Article
    CAS

    Google Scholar

  • Pleasure, P. A. & & Vasudevan, S. Magnetism in the split transition-metal thiophosphates M PS 3 ( M = Mn, Fe, as well as Ni). Phys. Rev. B 46, 5425 (1992 ).

    Article
    ADS
    CAS

    Google Scholar

  • Wildes, A. R. et al. Magnetic framework of the quasi-two-dimensional antiferromagnet NiPS 3 Phys. Rev. B 92, 224408 (2015 ).

    Article
    ADS

    Google Scholar

  • Piacentini, M., Khumalo, F., Olson, C., Anderegg, J. & & Lynch, D. Optical shifts, XPS, digital states in NiPS 3 Chem. Phys. 65, 289– 304 (1982 ).

    Article
    CAS

    Google Scholar

  • Takano, Y. et al. Magnetic residential or commercial properties as well as particular warm of M PS 3 ( M = Mn, Fe, Zn). J. Magn. Magn. Mater. 272– 276, E593– E595 (2004 ).

    Article
    ADS

    Google Scholar

  • Koopmans, B. et al. Clarifying the paradoxical variety of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259– 265 (2010 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Roth, T. et al. Temperature level dependancy of laser-induced demagnetization in Ni: a trick for determining the underlying system. Phys. Rev. X 2, 021006 (2012 ).


    Google Scholar

  • Windsor, Y. W. et al. Exchange scaling of ultrafast angular energy transfer in 4 f antiferromagnets. Nat. Mater. 21, 514– 517 (2022 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Ouvrard, G., Brec, R. & & Rouxel, J. Structural decision of some MPS 3 split stages (M = Mn, Fe, Carbon Monoxide, Ni as well as Cd). Mater. Res. Bull. 20, 1181– 1189 (1985 ).

    Article
    CAS

    Google Scholar

  • Stephens, P. W. Phenomenological version of anisotropic top widening in powder diffraction. J. Appl. Crystallogr. 32, 281– 289 (1999 ).

    Article
    CAS

    Google Scholar

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here