Quantum gas mixtures and dual-species atom interferometry in space

0
5


  • Becker, D. et al. Space-borne Bose– Einstein condensation for accuracy interferometry. Nature 562, 391– 395 (2018 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Aveline, D. C. et al. Observation of Bose– Einstein condensates in an Earth-orbiting research study laboratory. Nature 582, 193– 197 (2020 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Levin, K, Fetter, A. L & & Stamper-Kurn, D. M. Ultracold Bosonic and Fermionic Gases (Elsevier, 2012).

  • Asenbaum, P., Overstreet, C., Kim, M., Curti, J. & & Kasevich, M. A. Atom-interferometric test of the equivalence concept at the 10 − 12 level. Phys. Rev. Lett. 125, 191101 (2020 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Safronova, M. et al. Look for brand-new physics with particles and atoms. Rev. Mod. Phys. 90, 025008 (2018 ).

    Article
    ADS
    MathSciNet
    CAS

    Google Scholar

  • Bassi, A. et al. A method forward for basic physics in area. npj Microgravity 8, 49 (2022 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Alonso, I. et al. Cold atoms in area: neighborhood workshop summary and proposed road-map. EPJ Quantum Technol. 9, 30 (2022 ).

    Article

    Google Scholar

  • Lachmann, M. D. et al. Ultracold atom interferometry in area. Nat. Commun. 12, 1317 (2021 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Frye, K. et al. The Bose-Einstein condensate and cold atom lab. EPJ Quantum Technol. 8, 1 (2021 ).

    Article

    Google Scholar

  • Li, L. et al. The style, awareness, and recognition of the plan for quantum degenerate research study in microgravity. IEEE Photonics J. 15, 1– 8 (2023 ).


    Google Scholar

  • Elsen, M. et al. A dual-species atom interferometer payload for operation on sounding rockets. Microgravity Sci. Technol. 35, 15 (2023 ).

    Article

    Google Scholar

  • Bloch, I., Dalibard, J. & & Nascimbéne, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267– 276 (2012 ).

    Article
    CAS

    Google Scholar

  • Braaten, E. & & Hammer, H. W. Universality in few-body systems with big scattering length. Phys. Rep. 428, 259– 290 (2006 ).

    Article
    ADS
    MathSciNet
    CAS

    Google Scholar

  • Salomon, C., Shlyapnikov, G. V. & & Cugliandolo, L. F. Many-Body Physics with Ultracold Gases: Lecture Notes of the Les Houches Summer School (Oxford Univ. Press, 2012 ). (* )Leanhardt, A. E. et al. Cooling Bose-Einstein condensates listed below 500 picokelvin.

  • Science 301 , 1513– 1515 (2003 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar
    Ammann, H. & & Christensen, N. Delta kick cooling: a brand-new approach for cooling atoms.

  • Phys. Rev. Lett. 78 , 2088– 2091 (1997 ).

    Article
    ADS
    CAS

    Google Scholar
    Gaaloul, N. et al. A space-based quantum gas lab at picokelvin energy scales.

  • Nat. Commun. 13 , 7889 (2022 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar
    Deppner, C. et al. Collective-mode improved matter-wave optics.

  • Phys. Rev. Lett. 127 , 100401 (2021 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar
    Kovachy, T. et al. Matter wave lensing to picokelvin temperature levels.

  • Phys. Rev. Lett. 114 , 143004 (2015 ).

    Article
    ADS
    PubMed

    Google Scholar
    Wolf, A. et al. Shell-shaped Bose-Einstein condensates based upon dual-species mixes.

  • Phys. Rev. A 106 , 013309 (2022 ).

    Article
    ADS
    CAS

    Google Scholar
    Chin, C., Grimm, R., Julienne, P. & & Tiesinga, E. Feshbach resonances in ultracold gases.

  • Rev. Mod. Phys. 82 , 1225– 1286 (2010 ).

    Article
    ADS
    CAS

    Google Scholar
    Chapurin, R. et al. Accuracy test of the limitations to universality in few-body physics.

  • Phys. Rev. Lett. 123 , 233402 (2019 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar
    Xie, X. et al. Observation of Efimov universality throughout a nonuniversal Feshbach resonance in

  • 39 K. Phys. Rev. Lett. 125 , 243401 (2020 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar
    Touboul, P. et al. Microscopic lense objective: results of the test of the equivalence concept.

  • Phys. Rev. Lett. 129 , 121102 (2022 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar
    Amelino-Camelia, G. et al. EVALUATE: the GrAnd Unification and Gravity Explorer.

  • Exp. Astron. 23 , 549– 572 (2009 ).

    Article
    ADS

    Google Scholar
    Schuldt, T. et al. Style of a double types atom interferometer for area.

  • Exp. Astron. 39 , 167– 206 (2015 ).

    Article
    ADS

    Google Scholar
    Williams, J. R., Chiow, S.-W., Yu, N. & & Müller, H. Quantum test of the equivalence concept and space-time aboard the worldwide spaceport station.

  • New J. Phys. 18 , 025018 (2016 ).

    Article
    ADS

    Google Scholar
    Ahlers, H. et al. STE-QUEST: Space Time Explorer and QUantum Equivalence concept Space Test. Preprint at

  • (2022 ).https://arxiv.org/abs/2211.15412 Barrett, B. et al. Double matter-wave inertial sensing units in weightlessness.

  • Nat. Commun. 7 , 13786 (2016 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar
    Bigelow, N. Consortium for Ultracold Atoms in Space.

  • (2015 ).https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=10085 Cornell, E. Zero-G Studies of Few-Body and Many-Body Physics.

  • (2017 ).https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=11096 Williams, J. Fundamental Interactions for Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment.

  • (2017 ).https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=11101 Lundblad, N. Microgravity Dynamics of Bubble-Geometry Bose-Einstein Condensates.

  • (2017 ).https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=11095 Sackett, C. Development of Atom Interferometry Experiments for the International Space Station’s Cold Atom Laboratory.

  • (2017 ).https://taskbook.nasaprs.com/tbp/tbpdf.cfm?id=11097 Pollard, A. R., Moan, C. A., Sackett, C. A., Elliott, E. R. & & Thompson, R. J. Quasi-adiabatic external state preparation of ultracold atoms in microgravity.

  • Microgravity Sci. Technol. 32 , 1175– 1184 (2020 ).

    Article
    ADS
    CAS

    Google Scholar
    Carollo, R. A. et al. Observation of ultracold atomic bubbles in orbital microgravity.

  • Nature 606 , 281– 286 (2022 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar
    Williams, J. R. et al. Interferometry of atomic matter-waves in a Cold Atom Lab onboard the International Space Station (in preparation).

  • Inouye, S. et al. Observation of heteronuclear Feshbach resonances in a mix of fermions and bosons.

  • Phys. Rev. Lett. 93 , 183201 (2004 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar
    Klempt, C. et al.

  • 40 K– 87 Rb Feshbach resonances: modeling the interatomic capacity. Phys. Rev. A 76 , 020701 (2007 ).

    Article
    ADS

    Google Scholar
    Ferlaino, F. et al. Feshbach spectroscopy of a K– Rb atomic mix.

  • Phys. Rev. A 73 , 040702 (2006 ).

    Article
    ADS

    Google Scholar
    Timmermans, E. M. E., Tommasini, P., Hussein, M. S. & & Kerman, A. K. Feshbach resonances in atomic Bose– Einstein condensates.

  • Phys. Rep. 315 , 199– 230 (1999 ).

    Article
    ADS
    CAS

    Google Scholar
    Elliott, E. R., Krutzik, M. C., Williams, J. R., Thompson, R. J. & & Aveline, D. C. NASA’s Cold Atom Lab (CAL): system advancement and ground test status.

  • npj Microgravity 4 , 16 (2018 ).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar
    Modugno, G. et al. Bose-Einstein condensation of potassium atoms by understanding cooling.

  • Science 294 , 1320– 1322 (2001 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar
    Modugno, G., Modugno, M., Riboli, F., Roati, G. & & Inguscio, M. Two atomic types superfluid.

  • Phys. Rev. Lett. 89 , 190404 (2002 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar
    Campbell, R. et al. Effective production of big

  • 39 K Bose-Einstein condensates. Phys. Rev. A 82 , 063611 (2010 ).

    Article
    ADS

    Google Scholar
    Wacker, L. et al. Tunable dual-species Bose-Einstein condensates of

  • 39 K and 87 Rb. Phys. Rev. A 92 , 053602 (2015 ).

    Article
    ADS

    Google Scholar
    Roati, G. et al.

  • 39 K Bose-Einstein condensate with tunable interactions. Phys. Rev. Lett. 99 , 010403 (2007 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar
    Burchianti, A. et al. Dual-species Bose-Einstein condensate of

  • 41 K and 87 Rb in a hybrid trap. Phys. Rev. A 98 , 063616 (2018 ).

    Article
    ADS
    CAS

    Google Scholar
    Pichery, A. et al. Effective mathematical description of the characteristics of communicating multispecies quantum gases. Preprint at

  • (2023 ).https://doi.org/10.48550/arXiv.2305.13433 Kozuma, M. et al. Meaningful splitting of Bose-Einstein condensed atoms with optically caused Bragg diffraction.

  • Phys. Rev. Lett. 82 , 871– 875 (1999 ).

    Article
    ADS
    CAS

    Google Scholar
    Chiow, S.-w, Williams, J. & & Yu, N. Noise decrease in differential stage extraction of double atom interferometers utilizing an active servo loop.

  • Phys. Rev. A 93 , 013602 (2016 ).

    Article
    ADS

    Google Scholar
    Cavicchioli, L., Fort, C., Modugno, M., Minardi, F. & & Burchianti, A. Dipole characteristics of a connecting bosonic mix.

  • Phys. Rev. Res. 4 , 043068 (2022 ).

    Article
    CAS

    Google Scholar
    D’Incao, J. P., Krutzik, M., Elliott, E. & & Williams, J. R. Enhanced association and dissociation of heteronuclear Feshbach particles in a microgravity environment.

  • Phys. Rev. A 95 , 012701 (2017 ).

    Article
    ADS

    Google Scholar
    Engles, P., Bisset, R. N., D’Incao, J., Forbes, M. M. & & Mossman, M. E. Topical: Fundamental Physics and Opportunities with Ultracold Quantum Droplets in Space.

  • (2021 ).https://smd-cms.nasa.gov/wp-content/uploads/2023/05/231_3b2a5a757441d7f3fc94f60661efc284_EngelsPeter.pdf D’Incao, J. P. et al. Opportunities and viewpoints: a molecular toolkit for basic physics and matter-wave interferometry in microgravity.

  • Quantum Sci. Technol. 8 , 014004 (2022 ).

    Article
    ADS

    Google Scholar
    Chapman, M. S. et al. Optics and interferometry with Na

  • 2 particles. Phys. Rev. Lett. 74 , 4783– 4786 (1995 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar
    Penrose, R. On the gravitization of quantum mechanics 1: quantum state decrease.

  • Found. Phys. 44 , 557– 575 (2014 ).

    Article
    ADS
    MathSciNet
    MATH

    Google Scholar
    Ferrari, G. et al. Collisional homes of ultracold K-Rb mixes.

  • Phys. Rev. Lett. 89 , 053202 (2002 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar
    Dieckmann, K.

  • Bose-Einstein Condensation with High Atom Number in a Deep Magnetic Trap PhD thesis, Universiteit van Amsterdam (2001 ). Myatt, C. J.

  • Bose-Einstein Condensation Experiments in a Dilute Vapor of Rubidium PhD thesis, Univ. Colorado (1997 ). Garrido Alzar, C. L., Perrin, H., Garraway, B. M. & & Lorent, V. Evaporative cooling in a radio-frequency trap.

  • Phys. Rev. A 74 , 053413 (2006 ).

    Article
    ADS

    Google Scholar
    Segal, S. R., Diot, Q., Cornell, E. A., Zozulya, A. A. & & Anderson, D. Z. Revealing buried details: Statistical processing strategies for ultracold-gas image analysis.

  • Phys. Rev. A 81 , 053601 (2010 ). Siemß, J.-N. et al. Analytic theory for Bragg atom interferometry based upon the adiabatic theorem.

  • Phys. Rev. A 102 , 033709 (2020 ).

    Article
    ADS

    Google Scholar
    Jenewein, J., Hartmann, S., Roura, A. & & Giese, E. Bragg-diffraction-induced flaws of the signal in retroreflective atom interferometers.

  • Phys. Rev. A 105 , 063316 (2022 ).

    Article
    ADS
    CAS

    Google Scholar

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here