Saal, C. Selection of solid-state types: difficulties, chances, lessons found out and experiences from current years. J. Pharm. Pharmacol. 67, 755– 756 (2015 ).
Yang, M. et al. Forecast of the relative totally free energies of drug polymorphs above no kelvin. Cryst. Development Des. 20, 5211– 5224 (2020 ).
Abramov, Y. A., Sun, G. & & Zeng, Q. Emerging landscape of computational modeling in pharmaceutical advancement. J. Chem. Inf. Design. 62, 1160– 1171 (2022 ).
Hoja, J. et al. Practical and dependable computational description of molecular crystal polymorphs. Sci. Adv. 5, eaau3338 (2019 ).
Price, S. L. & & Reutzel-Edens, S. M. The capacity of calculated crystal energy landscapes to help solid-form advancement. Drug Discov. Today 21, 912– 923 (2016 ).
Hartel, R. W. Advances in food formation. Annu. Rev. Food Sci. Technol. 4, 277– 292 (2013 ).
Yang, J. et al. Massive computational screening of molecular natural semiconductors utilizing crystal structure forecast. Chem. Mater. 30, 4361– 4371 (2018 ).
Cady, H. H., Larson, A. C. & & Cromer, D. T. The crystal structure of α-HMX and an improvement of the structure of β-HMX. Acta Crystallogr. 16, 617– 623 (1963 ).
Lamberth, C., Jeanmart, S., Luksch, T. & & Plant, A. Current difficulties and patterns in the discovery of agrochemicals. Science 341, 742– 746 (2013 ).
Lee, E. H. An useful guide to pharmaceutical polymorph screening & & choice. Asian J. Pharm. Sci. 9, 163– 175 (2014 ).
Censi, R. & & Di Martino, P. Polymorph influence on the bioavailability and stability of inadequately soluble drugs. Molecules 20, 18759– 18776 (2015 ).
Bauer, J. et al. Ritonavir: a remarkable example of conformational polymorphism. Pharm. Res. 18, 859– 866 (2001 ).
Yokoyama, T., Umeda, T., Kuroda, K., Sato, K. & & Takagishi, Y. Studies on drug nonequivalence. VII. Bioavailability of acetohexamide polymorphs. Chem. Pharm. Bull. 27, 1476– 1478 (1979 ).
Aguiar, A. J. & & Zelmer, J. E. Dissolution habits of polymorphs of chloramphenicol palmitate and mefenamic acid. J. Pharm. Sci. 58, 983– 987 (1969 ).
Wolff, H.-M., Quéré, L. & & Riedner, J. Polymorphic type of rotigotine. European patent 2215072 B1 (2015 ).
Newman, A. & & Wenslow, R. Solid type modifications throughout drug advancement: great, bad, and awful case research studies. AAPS Open 2, 2 (2016 ).
Braun, D. E. et al. Troublesome facts about strong type landscapes exposed in the polymorphs and hydrates of gandotinib. Cryst. Development Des. 19, 2947– 2962 (2019 ).
Peresypkin, A. et al. Discovery of a steady molecular complex of an API with HCl: a long journey to a traditional salt. J. Pharm. Sci. 97, 3721– 3726 (2008 ).
Chekal, B. P. et al. The difficulties of establishing an API formation procedure for a complicated polymorphic and extremely solvating system. Part I. Org. Process Res. Dev. 13, 1327– 1337 (2009 ).
Neumann, M. A., van de Streek, J., Fabbiani, F. P. A., Hidber, P. & & Grassmann, O. Combined crystal structure forecast and high-pressure formation in reasonable pharmaceutical polymorph screening. Nat. Commun. 6, 7793 (2015 ).
Taylor, C. R. et al. Reducing polymorphic threat through cooperative computational and speculative expedition. J. Am. Chem. Soc. 142, 16668– 16680 (2020 ).
Bhardwaj, R. M. et al. A respected solvate previous, galunisertib, under the pressure of crystal structure forecast, produces 10 varied polymorphs. J. Am. Chem. Soc. 141, 13887– 13897 (2019 ).
Andrews, J. L. et al. Derisking the polymorph landscape: the complex polymorphism of mexiletine hydrochloride. Cryst. Development Des. 21, 7150– 7167 (2021 ).
Dybeck, E. C., McMahon, D. P., Day, G. M. & & Shirts, M. R. Exploring the multi-minima habits of little particle crystal polymorphs at limited temperature level. Cryst. Development Des. 19, 5568– 5580 (2019 ).
Francia, N. F., Price, L. S., Nyman, J., Price, S. L. & & Salvalaglio, M. Systematic finite-temperature decrease of crystal energy landscapes. Cryst. Development Des. 20, 6847– 6862 (2020 ).
Sun, G. et al. Existing modern in-house and cloud-based applications of virtual polymorph screening of pharmaceutical substances: a tough case of AZD1305. Cryst. Development Des. 21, 1972– 1983 (2021 ).
Bowskill, D. H., Sugden, I. J., Konstantinopoulos, S., Adjiman, C. S. & & Pantelides, C. C. Crystal structure forecast approaches for natural particles: cutting-edge. Annu. Rev. Chem. Biomol. Eng. 12, 593– 623 (2021 ).
Dudek, M. K. & & Drużbicki, K. Along the roadway to crystal structure forecast (CSP) of pharmaceutical-like particles. CrystEngComm 24, 1665– 1678 (2022 ).
Greenwell, C. et al. Conquering the problems of forecasting conformational polymorph energetics in molecular crystals through associated wavefunction approaches. Chem. Sci. 11, 2200– 2214 (2020 ).
Beran, G. J. O. et al. The number of more polymorphs of ROY stay undiscovered. Chem. Sci. 13, 1288– 1297 (2022 ).
Zhang, P. et al. Utilizing cloud architecture for crystal structure forecast estimations. Cryst. Development Des. 18, 6891– 6900 (2018 ).
Mortazavi, M. et al. Computational polymorph screening exposes poorly-soluble and late-appearing type of rotigotine. Commun. Chem. 2, 70 (2019 ).
Mattei, A. et al. Effective crystal structure forecast for structurally associated particles with transferable and precise custom-made force fields. J. Chem. Theory Comput. 18, 5725– 5738 (2022 ).
Braun, D. E., Karamertzanis, P. G. & & Price, S. L. Which, if any, hydrates will crystallise? Anticipating hydrate development of 2 dihydroxybenzoic acids. Chem. Commun. 47, 5443– 5445 (2011 ).
Cruz-Cabeza, A. J. et al. Anticipating stoichiometry and structure of solvates. Chem. Commun. 46, 2224– 2226 (2010 ).
Cruz-Cabeza, A. J., Day, G. M. & & Jones, W. Towards forecast of stoichiometry in crystalline multicomponent complexes. Chem. Eur. J. 14, 8830– 8836 (2008 ).
Dybeck, E. C. et al. A contrast of approaches for computing relative anhydrous– hydrate stability with molecular simulation. Cryst. Development Des. 23, 142– 167 (2023 ).
Hong, R. S., Mattei, A., Sheikh, A. Y. & & Tuckerman, M. E. A topological and data-driven mapping method for the a priori forecast of steady molecular crystalline hydrates. Proc. Natl Acad. Sci. U.S.A. 119, e2204414119 (2022 ).
Hermann, J. & & Tkatchenko, A. Density practical design for van der Waals interactions: unifying many-body atomic techniques with nonlocal functionals. Phys. Rev. Lett. 124, 146401 (2020 ).
Mony, L., Kew, J. N., Gunthorpe, M. J. & & Paoletti, P. Allosteric modulators of NR2B-containing NMDA receptors: molecular systems and restorative capacity. Br. J. Pharmacol. 157, 1301– 1317 (2009 ).
Auvin, S. et al. Radiprodil, a NR2B unfavorable allosteric modulator, from bench to bedside in infantile convulsion syndrome. Ann. Clin. Transl. Neurol. 7, 343– 352 (2020 ).
Mullier, B. et al. GRIN2B gain of function anomalies are delicate to radiprodil, an unfavorable allosteric modulator of GluN2B-containing NMDA receptors. Neuropharmacology 123, 322– 331 (2017 ).
Mohamed, M.-E. F., Zeng, J., Marroum, P. J., Song, I.-H. & & Othman, A. A. Pharmacokinetics of upadacitinib with the scientific programs of the extended‐release formula made use of in rheumatoid arthritis stage 3 trials. Clin. Pharmacol. Drug Dev. 8, 208– 216 (2019 ).
Duggan, S. & & Keam, S. J. Upadacitinib: very first approval. Drugs 79, 1819– 1828 (2019 ).
Neumann, M. A. & & van de Streek, J. How numerous ritonavir cases exist still out there? Faraday Discuss. 211, 441– 458 (2018 ).
Maddox, J. Crystals from very first concepts. Nature 335, 201 (1988 ).
Poltavsky, I. & & Tkatchenko, A. Machine discovering force fields: current advances and staying difficulties. J. Phys. Chem. Lett. 12, 6551– 6564 (2021 ).
Unke, O. T. et al. Artificial intelligence force fields. Chem. Rev. 121, 10142– 10186 (2021 ).
Lee, T. J. & & Scuseria, G. E. in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy Vol. 13 (ed. Langhoff, S. R.) 47– 108 (Springer, 1995).
Beran, G. J. O., Wright, S. E., Greenwell, C. & & Cruz-Cabeza, A. J. The interaction of intra- and intermolecular mistakes in modeling conformational polymorphs. J. Chem. Phys. 156, 104112 (2022 ).
Perdew, J. P., Burke, K. & & Ernzerhof, M. Generalized gradient approximation made basic. Phys. Rev. Lett. 77, 3865– 3868 (1996 ).
Neumann, M. A. & & Perrin, M.-A. Energy ranking of molecular crystals utilizing density practical theory estimations and an empirical van der Waals correction. J. Phys. Chem. B 109, 15531– 15541 (2005 ).
Blum, V. et al. Ab initio molecular simulations with numerical atom-centered orbitals. Comput. Phys. Commun. 180, 2175– 2196 (2009 ).
Knuth, F., Carbogno, C., Atalla, V., Blum, V. & & Scheffler, M. All-electron formalism for overall energy pressure derivatives and tension tensor elements for numerical atom-centered orbitals. Comput. Phys. Commun. 190, 33– 50 (2015 ).
Togo, A., Seto, Y. & & Pashov, D. Spglib. GitHub https://github.com/spglib/spglib (2008 ).
Yu, V. W. et al. ELSI: A combined software application user interface for Kohn– Sham electronic structure solvers. Comput. Phys. Commun. 222, 267– 285 (2018 ).
Havu, V., Blum, V., Havu, P. & & Scheffler, M. Efficient O( N) combination for all-electron electronic structure estimation utilizing numerical basis functions. J. Comput. Phys. 228, 8367– 8379 (2009 ).
Perdew, J. P., Ernzerhof, M. & & Burke, K. Rationale for blending precise exchange with density practical approximations. J. Chem. Phys. 105, 9982– 9985 (1996 ).
Adamo, C. & & Barone, V. Toward dependable density practical approaches without adjustable specifications: the PBE0 design. J. Chem. Phys. 110, 6158– 6170 (1999 ).
Tkatchenko, A., DiStasio, R. A. Jr., Car, R. & & Scheffler, M. Accurate and effective technique for many-body van der Waals interactions. Phys. Rev. Lett. 108, 236402 (2012 ).
Ambrosetti, A., Reilly, A. M., DiStasio, R. A. Jr. & & Tkatchenko, A. Long-range connection energy determined from combined atomic reaction functions. J. Chem. Phys. 140, 18A508 (2014 ).
Řezáč, J., Greenwell, C. & & Beran, G. J. O. Accurate noncovalent interactions through dispersion-corrected second-order Møller– Plesset perturbation theory. J. Chem. Theory Comput. 14, 4711– 4721 (2018 ).
Zhang, I. Y., Ren, X., Rinke, P., Blum, V. & & Scheffler, M. Numeric atom-centered-orbital basis sets with valence-correlation consistency from H to Ar. New J. Phys. 15, 123033 (2013 ).
psi4. Anaconda.org. https://anaconda.org/psi4/repo.
Smith, D. G. A. et al. P si 4 1.4: open-source software application for high-throughput quantum chemistry. J. Chem. Phys. 152, 184108 (2020 ).
Neumann, M. A., Leusen, F. J. J. & & Kendrick, J. A significant advance in crystal structure forecast. Angew. Chem. Int. Ed. 47, 2427– 2430 (2008 ).
Neumann, M. A. Tailor-made force fields for crystal-structure forecast. J. Phys. Chem. B 112, 9810– 9829 (2008 ).