Predicting crystal form stability under real-world conditions

0
6


  • Saal, C. Selection of solid-state types: difficulties, chances, lessons found out and experiences from current years. J. Pharm. Pharmacol. 67, 755– 756 (2015 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Yang, M. et al. Forecast of the relative totally free energies of drug polymorphs above no kelvin. Cryst. Development Des. 20, 5211– 5224 (2020 ).

    Article
    CAS

    Google Scholar

  • Abramov, Y. A., Sun, G. & & Zeng, Q. Emerging landscape of computational modeling in pharmaceutical advancement. J. Chem. Inf. Design. 62, 1160– 1171 (2022 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Hoja, J. et al. Practical and dependable computational description of molecular crystal polymorphs. Sci. Adv. 5, eaau3338 (2019 ).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Price, S. L. & & Reutzel-Edens, S. M. The capacity of calculated crystal energy landscapes to help solid-form advancement. Drug Discov. Today 21, 912– 923 (2016 ).

    Article
    PubMed

    Google Scholar

  • Hartel, R. W. Advances in food formation. Annu. Rev. Food Sci. Technol. 4, 277– 292 (2013 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Yang, J. et al. Massive computational screening of molecular natural semiconductors utilizing crystal structure forecast. Chem. Mater. 30, 4361– 4371 (2018 ).

    Article
    ADS
    CAS

    Google Scholar

  • Cady, H. H., Larson, A. C. & & Cromer, D. T. The crystal structure of α-HMX and an improvement of the structure of β-HMX. Acta Crystallogr. 16, 617– 623 (1963 ).

    Article
    CAS

    Google Scholar

  • Lamberth, C., Jeanmart, S., Luksch, T. & & Plant, A. Current difficulties and patterns in the discovery of agrochemicals. Science 341, 742– 746 (2013 ).

    Article
    ADS
    PubMed

    Google Scholar

  • Lee, E. H. An useful guide to pharmaceutical polymorph screening & & choice. Asian J. Pharm. Sci. 9, 163– 175 (2014 ).

    Article

    Google Scholar

  • Censi, R. & & Di Martino, P. Polymorph influence on the bioavailability and stability of inadequately soluble drugs. Molecules 20, 18759– 18776 (2015 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Bauer, J. et al. Ritonavir: a remarkable example of conformational polymorphism. Pharm. Res. 18, 859– 866 (2001 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Yokoyama, T., Umeda, T., Kuroda, K., Sato, K. & & Takagishi, Y. Studies on drug nonequivalence. VII. Bioavailability of acetohexamide polymorphs. Chem. Pharm. Bull. 27, 1476– 1478 (1979 ).

    Article
    CAS

    Google Scholar

  • Aguiar, A. J. & & Zelmer, J. E. Dissolution habits of polymorphs of chloramphenicol palmitate and mefenamic acid. J. Pharm. Sci. 58, 983– 987 (1969 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Wolff, H.-M., Quéré, L. & & Riedner, J. Polymorphic type of rotigotine. European patent 2215072 B1 (2015 ).

  • Newman, A. & & Wenslow, R. Solid type modifications throughout drug advancement: great, bad, and awful case research studies. AAPS Open 2, 2 (2016 ).

    Article

    Google Scholar

  • Braun, D. E. et al. Troublesome facts about strong type landscapes exposed in the polymorphs and hydrates of gandotinib. Cryst. Development Des. 19, 2947– 2962 (2019 ).

    Article
    CAS

    Google Scholar

  • Peresypkin, A. et al. Discovery of a steady molecular complex of an API with HCl: a long journey to a traditional salt. J. Pharm. Sci. 97, 3721– 3726 (2008 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Chekal, B. P. et al. The difficulties of establishing an API formation procedure for a complicated polymorphic and extremely solvating system. Part I. Org. Process Res. Dev. 13, 1327– 1337 (2009 ).

    Article
    CAS

    Google Scholar

  • Neumann, M. A., van de Streek, J., Fabbiani, F. P. A., Hidber, P. & & Grassmann, O. Combined crystal structure forecast and high-pressure formation in reasonable pharmaceutical polymorph screening. Nat. Commun. 6, 7793 (2015 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Taylor, C. R. et al. Reducing polymorphic threat through cooperative computational and speculative expedition. J. Am. Chem. Soc. 142, 16668– 16680 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Bhardwaj, R. M. et al. A respected solvate previous, galunisertib, under the pressure of crystal structure forecast, produces 10 varied polymorphs. J. Am. Chem. Soc. 141, 13887– 13897 (2019 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Andrews, J. L. et al. Derisking the polymorph landscape: the complex polymorphism of mexiletine hydrochloride. Cryst. Development Des. 21, 7150– 7167 (2021 ).

    Article
    CAS

    Google Scholar

  • Dybeck, E. C., McMahon, D. P., Day, G. M. & & Shirts, M. R. Exploring the multi-minima habits of little particle crystal polymorphs at limited temperature level. Cryst. Development Des. 19, 5568– 5580 (2019 ).

    Article
    CAS

    Google Scholar

  • Francia, N. F., Price, L. S., Nyman, J., Price, S. L. & & Salvalaglio, M. Systematic finite-temperature decrease of crystal energy landscapes. Cryst. Development Des. 20, 6847– 6862 (2020 ).

    Article
    CAS

    Google Scholar

  • Sun, G. et al. Existing modern in-house and cloud-based applications of virtual polymorph screening of pharmaceutical substances: a tough case of AZD1305. Cryst. Development Des. 21, 1972– 1983 (2021 ).

    Article
    CAS

    Google Scholar

  • Bowskill, D. H., Sugden, I. J., Konstantinopoulos, S., Adjiman, C. S. & & Pantelides, C. C. Crystal structure forecast approaches for natural particles: cutting-edge. Annu. Rev. Chem. Biomol. Eng. 12, 593– 623 (2021 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Dudek, M. K. & & Drużbicki, K. Along the roadway to crystal structure forecast (CSP) of pharmaceutical-like particles. CrystEngComm 24, 1665– 1678 (2022 ).

    Article
    CAS

    Google Scholar

  • Greenwell, C. et al. Conquering the problems of forecasting conformational polymorph energetics in molecular crystals through associated wavefunction approaches. Chem. Sci. 11, 2200– 2214 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Beran, G. J. O. et al. The number of more polymorphs of ROY stay undiscovered. Chem. Sci. 13, 1288– 1297 (2022 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Zhang, P. et al. Utilizing cloud architecture for crystal structure forecast estimations. Cryst. Development Des. 18, 6891– 6900 (2018 ).

    Article
    CAS

    Google Scholar

  • Mortazavi, M. et al. Computational polymorph screening exposes poorly-soluble and late-appearing type of rotigotine. Commun. Chem. 2, 70 (2019 ).

    Article

    Google Scholar

  • Mattei, A. et al. Effective crystal structure forecast for structurally associated particles with transferable and precise custom-made force fields. J. Chem. Theory Comput. 18, 5725– 5738 (2022 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Braun, D. E., Karamertzanis, P. G. & & Price, S. L. Which, if any, hydrates will crystallise? Anticipating hydrate development of 2 dihydroxybenzoic acids. Chem. Commun. 47, 5443– 5445 (2011 ).

    Article
    CAS

    Google Scholar

  • Cruz-Cabeza, A. J. et al. Anticipating stoichiometry and structure of solvates. Chem. Commun. 46, 2224– 2226 (2010 ).

    Article
    CAS

    Google Scholar

  • Cruz-Cabeza, A. J., Day, G. M. & & Jones, W. Towards forecast of stoichiometry in crystalline multicomponent complexes. Chem. Eur. J. 14, 8830– 8836 (2008 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Dybeck, E. C. et al. A contrast of approaches for computing relative anhydrous– hydrate stability with molecular simulation. Cryst. Development Des. 23, 142– 167 (2023 ).

    Article
    CAS

    Google Scholar

  • Hong, R. S., Mattei, A., Sheikh, A. Y. & & Tuckerman, M. E. A topological and data-driven mapping method for the a priori forecast of steady molecular crystalline hydrates. Proc. Natl Acad. Sci. U.S.A. 119, e2204414119 (2022 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hermann, J. & & Tkatchenko, A. Density practical design for van der Waals interactions: unifying many-body atomic techniques with nonlocal functionals. Phys. Rev. Lett. 124, 146401 (2020 ).

    Article
    ADS
    MathSciNet
    CAS
    PubMed

    Google Scholar

  • Mony, L., Kew, J. N., Gunthorpe, M. J. & & Paoletti, P. Allosteric modulators of NR2B-containing NMDA receptors: molecular systems and restorative capacity. Br. J. Pharmacol. 157, 1301– 1317 (2009 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Auvin, S. et al. Radiprodil, a NR2B unfavorable allosteric modulator, from bench to bedside in infantile convulsion syndrome. Ann. Clin. Transl. Neurol. 7, 343– 352 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Mullier, B. et al. GRIN2B gain of function anomalies are delicate to radiprodil, an unfavorable allosteric modulator of GluN2B-containing NMDA receptors. Neuropharmacology 123, 322– 331 (2017 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Mohamed, M.-E. F., Zeng, J., Marroum, P. J., Song, I.-H. & & Othman, A. A. Pharmacokinetics of upadacitinib with the scientific programs of the extended‐release formula made use of in rheumatoid arthritis stage 3 trials. Clin. Pharmacol. Drug Dev. 8, 208– 216 (2019 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Duggan, S. & & Keam, S. J. Upadacitinib: very first approval. Drugs 79, 1819– 1828 (2019 ).

    Article
    PubMed

    Google Scholar

  • Neumann, M. A. & & van de Streek, J. How numerous ritonavir cases exist still out there? Faraday Discuss. 211, 441– 458 (2018 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Maddox, J. Crystals from very first concepts. Nature 335, 201 (1988 ).

    Article
    ADS

    Google Scholar

  • Poltavsky, I. & & Tkatchenko, A. Machine discovering force fields: current advances and staying difficulties. J. Phys. Chem. Lett. 12, 6551– 6564 (2021 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Unke, O. T. et al. Artificial intelligence force fields. Chem. Rev. 121, 10142– 10186 (2021 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lee, T. J. & & Scuseria, G. E. in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy Vol. 13 (ed. Langhoff, S. R.) 47– 108 (Springer, 1995).

  • Beran, G. J. O., Wright, S. E., Greenwell, C. & & Cruz-Cabeza, A. J. The interaction of intra- and intermolecular mistakes in modeling conformational polymorphs. J. Chem. Phys. 156, 104112 (2022 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Perdew, J. P., Burke, K. & & Ernzerhof, M. Generalized gradient approximation made basic. Phys. Rev. Lett. 77, 3865– 3868 (1996 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Neumann, M. A. & & Perrin, M.-A. Energy ranking of molecular crystals utilizing density practical theory estimations and an empirical van der Waals correction. J. Phys. Chem. B 109, 15531– 15541 (2005 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Blum, V. et al. Ab initio molecular simulations with numerical atom-centered orbitals. Comput. Phys. Commun. 180, 2175– 2196 (2009 ).

    Article
    ADS
    CAS
    MATH

    Google Scholar

  • Knuth, F., Carbogno, C., Atalla, V., Blum, V. & & Scheffler, M. All-electron formalism for overall energy pressure derivatives and tension tensor elements for numerical atom-centered orbitals. Comput. Phys. Commun. 190, 33– 50 (2015 ).

    Article
    ADS
    MathSciNet
    CAS
    MATH

    Google Scholar

  • Togo, A., Seto, Y. & & Pashov, D. Spglib. GitHub https://github.com/spglib/spglib (2008 ).

  • Yu, V. W. et al. ELSI: A combined software application user interface for Kohn– Sham electronic structure solvers. Comput. Phys. Commun. 222, 267– 285 (2018 ).

    Article
    ADS
    CAS
    MATH

    Google Scholar

  • Havu, V., Blum, V., Havu, P. & & Scheffler, M. Efficient O( N) combination for all-electron electronic structure estimation utilizing numerical basis functions. J. Comput. Phys. 228, 8367– 8379 (2009 ).

    Article
    ADS
    CAS
    MATH

    Google Scholar

  • Perdew, J. P., Ernzerhof, M. & & Burke, K. Rationale for blending precise exchange with density practical approximations. J. Chem. Phys. 105, 9982– 9985 (1996 ).

    Article
    ADS
    CAS

    Google Scholar

  • Adamo, C. & & Barone, V. Toward dependable density practical approaches without adjustable specifications: the PBE0 design. J. Chem. Phys. 110, 6158– 6170 (1999 ).

    Article
    ADS
    CAS

    Google Scholar

  • Tkatchenko, A., DiStasio, R. A. Jr., Car, R. & & Scheffler, M. Accurate and effective technique for many-body van der Waals interactions. Phys. Rev. Lett. 108, 236402 (2012 ).

    Article
    ADS
    PubMed

    Google Scholar

  • Ambrosetti, A., Reilly, A. M., DiStasio, R. A. Jr. & & Tkatchenko, A. Long-range connection energy determined from combined atomic reaction functions. J. Chem. Phys. 140, 18A508 (2014 ).

    Article
    PubMed

    Google Scholar

  • Řezáč, J., Greenwell, C. & & Beran, G. J. O. Accurate noncovalent interactions through dispersion-corrected second-order Møller– Plesset perturbation theory. J. Chem. Theory Comput. 14, 4711– 4721 (2018 ).

    Article
    PubMed

    Google Scholar

  • Zhang, I. Y., Ren, X., Rinke, P., Blum, V. & & Scheffler, M. Numeric atom-centered-orbital basis sets with valence-correlation consistency from H to Ar. New J. Phys. 15, 123033 (2013 ).

    Article
    ADS

    Google Scholar

  • psi4. Anaconda.org. https://anaconda.org/psi4/repo.

  • Smith, D. G. A. et al. P si 4 1.4: open-source software application for high-throughput quantum chemistry. J. Chem. Phys. 152, 184108 (2020 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Neumann, M. A., Leusen, F. J. J. & & Kendrick, J. A significant advance in crystal structure forecast. Angew. Chem. Int. Ed. 47, 2427– 2430 (2008 ).

    Article
    CAS

    Google Scholar

  • Neumann, M. A. Tailor-made force fields for crystal-structure forecast. J. Phys. Chem. B 112, 9810– 9829 (2008 ).

    Article
    CAS
    PubMed

    Google Scholar

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here