Moon-forming impactor as a source of Earth’s basal mantle anomalies

0
8


  • Garnero, E. J., McNamara, A. K. & & Shim, S. H. Continent-sized anomalous zones with low seismic speed at the base of Earth’s mantle. Nat. Geosci. 9, 481– 489 (2016 ).

    Article
    CAS
    ADS

    Google Scholar

  • Labrosse, S., Hernlund, J. W. & & Coltice, N. A taking shape thick lava ocean at the base of the Earth’s mantle. Nature 450, 866– 869 (2007 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Canup, R. M. & & Asphaug, E. Origin of the Moon in a huge effect near completion of the Earth’s development. Nature 412, 708– 712 (2001 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Kokubo, E. & & Ida, S. Orbital advancement of protoplanets embedded in a swarm of planetesimals. Icarus 114, 247– 257 (1995 ).

    Article
    ADS

    Google Scholar

  • Cameron, A. G. W. & & Ward, W. R. The origin of the Moon. Abstr. Lunar Planet. Sci. Conf. 7, 120– 122 (1976 ).

    ADS

    Google Scholar

  • Ringwood, A. E. Volatile and siderophile aspect geochemistry of the Moon: a reappraisal. Earth Planet. Sci. Lett. 111, 537– 555 (1992 ).

    Article
    CAS
    ADS

    Google Scholar

  • Nie, N. X. & & Dauphas, N. Vapor drain in the protolunar disk as the cause for the deficiency in unstable aspects of the Moon. Astrophys. J. 884, L48 (2019 ).

    Article
    CAS
    ADS

    Google Scholar

  • Lee, C. T. A. et al. Upside-down distinction and generation of a prehistoric lower mantle. Nature 463, 930– 933 (2010 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Christensen, U. R. & & Hofmann, A. W. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. 99, 19867– 19884 (1994 ).

    Article
    CAS
    ADS

    Google Scholar

  • Williams, C. D., Mukhopadhyay, S., Rudolph, M. L. & & Romanowicz, B. Primitive helium is sourced from seismically sluggish areas in the lowermost mantle. Geochem. Geophys. Geosyst. 20, 4130– 4145 (2019 ).

    Article
    CAS
    ADS

    Google Scholar

  • Mukhopadhyay, S. Early distinction and unstable accretion taped in deep-mantle neon and xenon. Nature 486, 101– 104 (2012 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Desch, S. J. & & Robinson, K. L. A unified design for hydrogen in the Earth and Moon: nobody anticipates the Theia contribution. Chemie der Erde 79, 125546 (2019 ).

    Article
    ADS

    Google Scholar

  • Pepin, R. O. & & Porcelli, D. Origin of honorable gases in the terrestrial worlds. Rev. Mineral. Geochem. 47, 191– 246 (2002 ).

    Article
    CAS

    Google Scholar

  • Burke, K., Steinberger, B., Torsvik, T. H. & & Smethurst, M. A. Plume generation zones at the margins of big low shear speed provinces on the core– mantle border. Earth Planet. Sci. Lett. 265, 49– 60 (2008 ).

    Article
    CAS
    ADS

    Google Scholar

  • Will, P., Busemann, H., Riebe, M. E. I. & & Maden, C. Indigenous honorable gases in the Moon’s interior. Sci. Adv. 8, 1– 9 (2022 ).

    Article

    Google Scholar

  • Stewart, S. et al. The shock physics of huge effects: essential requirements for the formulas of state. AIP Conf. Proc. 2272, 080003 (2020 ).

    Article

    Google Scholar

  • Kegerreis, J. A., Eke, V. R., Massey, R. J., Sandnes, T. D. & & Teodoro, L. F. A. Immediate origin of the Moon as a post-impact satellite. Astrophys. J. Lett. 937, L40 (2022 ).

    Article
    ADS

    Google Scholar

  • Deng, H. et al. Boosted blending in Giant Impact simulations with a brand-new Lagrangian technique. Astrophys. J. 870, 127 (2019 ).

    Article
    CAS
    ADS

    Google Scholar

  • Deng, H. et al. Primitive Earth mantle heterogeneity brought on by the Moon-forming Giant Impact? Astrophys. J. 887, 211 (2019 ).

    Article
    CAS
    ADS

    Google Scholar

  • Cottaar, S. & & Lekic, V. Morphology of seismically sluggish lower-mantle structures. Geophys. J. Int. 207, 1122– 1136 (2016 ).

    Article
    ADS

    Google Scholar

  • Kegerreis, J. A. et al. Planetary huge effects: merging of high-resolution simulations utilizing effective round preliminary conditions and SWIFT. Mon. Not. R. Astron. Soc. 487,
    5029– 5040( 2019).

    Article &CAS ADS.
    Google Scholar

  • Deguen, R., Landeau, M. & Olson, P. Turbulent metal– silicate blending, fragmentation, and equilibration in lava oceans. Earth Planet. Sci.
    Lett.
    391, 274– 287 (2014).

    Article (* & ). CAS.ADS
    Google Scholar
    Dauphas, N., Burkhardt, C., Warren, P. H. & Fang-Zhen, T. Geochemical arguments for an Earth-like Moon-forming impactor.

  • Philos. Trans. R. Soc. A 372 ,
    20130244( 2014).

    Article (* & ). (* )Pahlevan, K., Stevenson, D. J. & Eiler, J. M. Chemical fractionation in the silicate vapor environment of the Earth. ADS Earth Planet. Sci. Lett.
    Google Scholar
    301

  • , 433– 443 (2011 ).

    Article
    CAS Meier, M. M. M., Reufer, A. & & Wieler, R. On the origin and structure of Theia: restrictions from brand-new designs of the Giant Impact. ADS Icarus
    Google Scholar
    242

  • , 316– 328 (2014 ).

    Article
    CAS Robinson, K. L. et al. Water in progressed lunar rocks: proof for several tanks. ADS Geochim. Cosmochim. Acta
    Google Scholar
    188

  • , 244– 260 (2016 ).

    Article
    CAS Connolly, J. A. D. Computation of stage stabilities by direct programs: a tool for geodynamic modeling and its application to subduction zone decarbonation. ADS Earth Planet. Sci. Lett.
    Google Scholar
    236

  • , 524– 541 (2005 ).

    Article
    CAS Connolly, J. A. D. The geodynamic formula of state: what and how. ADS Geochem. Geophys. Geosyst.
    Google Scholar
    10

  • , 1– 19 (2009 ).

    Stixrude, L. & & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals– II. Stage stabilities.

    Article Geophys. J. Int.
    Google Scholar
    184

  • , 1180– 1213 (2011 ).

    Article
    CAS Nakajima, M. & & Stevenson, D. J. Melting and blending states of the Earth’s mantle after the Moon-forming effect. ADS Earth Planet. Sci. Lett.
    Google Scholar
    427

  • , 286– 295 (2015 ).

    Article
    CAS Gurnis, M. The results of chemical density distinctions on convective blending in the Earth’s mantle. ADS J. Geophys. Res., Solid Earth
    Google Scholar
    91

  • , 11407– 11419 (1986 ).

    Tackley, P. J. in

    Article The Core‐Mantle Boundary Region
    Google Scholar
    (eds Gurnis, M., Wysession, M. E., Knittle, E. & & Buffet, B. A.) 231– 253 (American Geophysical Union, 1998).

  • Nakagawa, T., Tackley, P. J., Deschamps, F. & & Connolly, J. A. D. The impact of MORB and harzburgite structure on thermo-chemical mantle convection in a 3-D round shell with self-consistently computed mineral physics. Earth Planet. Sci. Lett. 296

  • , 403– 412 (2010 ).

    Article
    CAS Gu, T., Li, M., McCammon, C. & & Lee, K. K. M. Redox-induced lower mantle density contrast and result on mantle structure and primitive oxygen. ADS Nat. Geosci.
    Google Scholar
    9

  • , 723– 727 (2016 ).

    Article
    CAS Yuan, Q. & & Li, M. Instability of the African big low-shear-wave-velocity province due to its low intrinsic density. ADS Nat. Geosci.
    Google Scholar
    15

  • , 334– 339 (2022 ).

    Article
    CAS McNamara, A. K. & & Zhong, S. Thermochemical structures underneath Africa and the Pacific Ocean. ADS Nature
    Google Scholar
    437

  • , 1136– 1139 (2005 ).

    Article
    CAS
    PubMed O’Neill, C., Marchi, S., Zhang, S. & & Bottke, W. Impact-driven subduction on the Hadean Earth. ADS Nat. Geosci.
    Google Scholar
    10

  • , 793– 797 (2017 ).

    Article Hernlund, J. W. & & Houser, C. On the analytical circulation of seismic speeds in Earth’s deep mantle. ADS Earth Planet. Sci. Lett.
    Google Scholar
    265

  • , 423– 437 (2008 ).

    Article
    CAS Lei, W. et al. Worldwide adjoint tomography– design GLAD-M25. ADS Geophys. J. Int.
    Google Scholar
    223

  • , 1– 21 (2020 ).

    Article Elkins-Tanton, L. T. Magma oceans in the inner Solar System. ADS Annu. Rev. Earth Planet. Sci.
    Google Scholar
    40

  • , 113– 139 (2012 ).

    Article
    CAS Abe, Y. Chemical and thermal advancement of the terrestrial lava ocean. ADS Phys. Earth Planet. Inter.
    Google Scholar
    1

  • , 27– 39 (1997 ).

    Article Solomatov, V. S. in ADS Treatise on Geophysics
    Google Scholar
    1st edn, Vol. 9 (ed. Schubert, G.) 91– 119 (Elsevier, 2007).

  • Maurice, M. et al. Beginning of solid-state mantle convection and blending throughout lava ocean solidification. J. Geophys. Res., Planets 122

  • , 577– 598 (2017 ).

    Article Boukaré, C. E., Parmentier, E. M. & & Parman, S. W. Timing of mantle reverse throughout lava ocean solidification. ADS Earth Planet. Sci. Lett.
    Google Scholar
    491

  • , 216– 225 (2018 ).

    Article Labrosse, S., Morison, A., Deguen, R. & & Alboussière, T. Rayleigh– Bénard convection in a sneaking strong with melting and freezing at either or both its horizontal limits. ADS J. Fluid Mech.
    Google Scholar
    846

  • , 5– 36 (2018 ).

    Article
    MathSciNet
    CAS
    MATH Agrusta, R. et al. Mantle convection communicating with lava oceans. ADS Geophys. J. Int.
    Google Scholar
    220

  • , 1878– 1892 (2020 ).

    Article
    CAS Morison, A., Labrosse, S., Deguen, R. & & Alboussière, T. Timescale of reverse in a lava ocean cumulate. ADS Earth Planet. Sci. Lett.
    Google Scholar
    516

  • , 25– 36 (2019 ).

    Article
    CAS Becker, T. W., Kellogg, J. B. & & O’Connell, R. J. Thermal restrictions on the survival of primitive blobs in the lower mantle. ADS Earth Planet. Sci. Lett.
    Google Scholar
    171

  • , 351– 365 (1999 ).

    Article
    CAS Lock, S. J., Bermingham, K. R., Parai, R. & & Boyet, M. Geochemical restrictions on the origin of the Moon and conservation of ancient terrestrial heterogeneities. ADS Space Sci. Rev.
    Google Scholar
    216

  • , 1– 46 (2020 ).

    Ballmer, M. D., Lourenço, D. L., Hirose, K., Caracas, R. & & Nomura, R. Reconciling magma-ocean formation designs with the contemporary structure of the Earth’s mantle.

    Article Geochem. Geophys. Geosyst.
    Google Scholar
    18

  • , 2785– 2806 (2017 ).

    Article
    CAS Maas, C. & & Hansen, U. Dynamics of a terrestrial lava ocean under planetary rotation: a research study in round geometry. ADS Earth Planet. Sci. Lett.
    Google Scholar
    513

  • , 81– 94 (2019 ).

    Article
    CAS Williams, C. D. & & Mukhopadhyay, S. Capture of nebular gases throughout Earth’s accretion is protected in deep-mantle neon. ADS Nature
    Google Scholar
    565

  • , 78– 81 (2019 ).

    Article
    CAS
    PubMed Mundl-Petermeier, A. et al. Temporal advancement of primitive tungsten-182 and ADS 3
    Google Scholar
    He/

  • 4 He signatures in the Iceland mantle plume. Chem. Geol. 525, 245– 259 (2019 ).

    Article
    CAS Li, M., McNamara, A. K. & & Garnero, E. J. Chemical intricacy of hotspots brought on by biking oceanic crust through mantle tanks. ADS Nat. Geosci.
    Google Scholar
    7

  • , 366– 370 (2014 ).

    Article
    CAS Mulyukova, E., Steinberger, B., Dabrowski, M. & & Sobolev, S. V. Survival of LLSVPs for billions of years in a strongly convecting mantle: replenishment and damage of chemical abnormality. ADS J. Geophys. Res., Solid Earth
    Google Scholar
    120

  • , 3824– 3847 (2015 ).

    Article Jackson, M. G. et al. Ancient helium and tungsten isotopic signatures protected in mantle domains least customized by crustal recycling. ADS Proc. Natl Acad. Sci. U.S.A.
    Google Scholar
    117

  • , 30993– 31001 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central Brown, J. M. & & Shankland, T. J. Thermodynamic criteria in the Earth as identified from seismic profiles. ADS Geophys. J. R. Astron. Soc.
    Google Scholar
    66

  • , 579– 596 (1981 ).

    Article
    MATH Stacey, F. D. A thermal design of the earth. ADS Phys. Earth Planet. Inter.
    Google Scholar
    15

  • , 341– 348 (1977 ).

    Article Canup, R. M., Barr, A. C. & & Crawford, D. A. Lunar-forming effects: high-resolution SPH and AMR-CTH simulations. ADS Icarus
    Google Scholar
    222

  • , 200– 219 (2013 ).

    Article Hosono, N., Saitoh, T. R., Makino, J., Genda, H. & & Ida, S. The Giant Impact simulations with density independent smoothed particle hydrodynamics. ADS Icarus
    Google Scholar
    271

  • , 131– 157 (2016 ).

    Article Reinhardt, C. & & Stadel, J. Numerical elements of Giant Impact simulations. ADS Mon. Not. R. Astron. Soc.
    Google Scholar
    467

  • ,
    4252– 4263( 2017). (* ). . Ruiz-Bonilla, S. et al. Handling density discontinuities in planetary SPH simulations.

    Article Mon. Not. R. Astron. Soc. ADS 512
    Google Scholar
    ,
    4660– 4668( 2022).

  • & .

    Article Hosono, N. & Karato, S. The impact of formula of state on the Giant Impact simulations.CAS J. Geophys. Res.,
    PlanetsADS 127
    Google Scholar
    , 1– 18 (2022).

  • . Hosono, N. et al. Unconvergence of very-large-scale Giant Impact simulations. Publ. Astron. Soc. Jpn

    Article 69
    Google Scholar
    , 1– 11 (2017 ).


  • Meier, T., Reinhardt, C. & & Stadel, J. G. The EOS/resolution conspiracy: merging in proto-planetary crash simulations. Mon. Not. R. Astron. Soc.

    Article 1816
    Google Scholar
    ,
    1806– 1816( 2021). &

  • (* ). Raskin, C. & Owen, J. M. Examining the precision of astrophysical disk simulations with a generalized hydrodynamical test issue. Astrophys. J.

    Article 831ADS, 26 (2016 ).
    Google Scholar


  • Gabriel, T. S. J. & & Allen-Sutter, H. Dependencies of mantle shock heating in pairwise accretion. Astrophys. J. Lett.

    Article 915ADS, L32 (2021 ).
    Google Scholar


  • Frontiere, N., Raskin, C. D. & & Owen, J. M. CRKSPH– a conservative recreating kernel smoothed particle hydrodynamics plan. J. Comput. Phys.

    Article 332ADS, 160– 209 (2017 ).
    Google Scholar



  • Article Rosswog, S. Astrophysical smooth particle hydrodynamics. MathSciNet New Astron. Rev.MATH 53ADS, 78– 104 (2009 ).
    Google Scholar



  • Schaller, M. et al. SWIFT: SPH with inter-dependent fine-grained tasking. In

    Article Astrophysics Source Code LibraryCAS, ascl-1805 (2018 ).ADS Ruiz-Bonilla, S., Eke, V. R., Kegerreis, J. A., Massey, R. J. && Teodoro, L. F. A. The result of pre-impact spin on the Moon-forming crash.
    Google Scholar
    Mon. Not. R. Astron. Soc.

  • 2870, 2861– 2870 (2021). .

  • Canup, R. M. Forming a Moon with an Earth-like structure through a huge effect. Science 338

    ADS, 1052– 1056 (2012 ).
    Google Scholar



  • Article
    CAS Hopkins, P. F. A brand-new class of precise, mesh-free hydrodynamic simulation approaches. PubMed Mon. Not. R. Astron. Soc.PubMed Central 450ADS, 53– 110 (2015 ).
    Google Scholar



  • Thompson, S. L. & & Lauson, H. S.

    Article Improvements in the Chart D Radiation– Hydrodynamic Code. III. Modified Analytic Equation of State.CAS Sandia Report SC-RR-71 0174 (1972 ).ADS Melosh, H. J. A hydrocode formula of state for SiO
    Google Scholar
    2

  • Meteorit. World. Sci. 42

  • , 2079– 2098 (2007 ).



    Fiquet, G. et al. Melting of peridotite to 140 gigapascals.

    Article ScienceCAS 329ADS, 1516– 1518 (2010 ).
    Google Scholar



  • Article Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: ramification for melting of the Earth throughout its history. CAS Earth Planet. Sci. Lett.PubMed 304ADS, 251– 259 (2011 ).
    Google Scholar



  • Abe, Y. in

    Article Evolution of the Earth and PlanetsCAS (eds Takahashi, E., Jeanloz, R. & & Rubie, D.) 41– 54 (American Geophysical Union, 1993).ADS Miyazaki, Y. & & Korenaga, J. On the timescale of lava ocean solidification and its chemical effects: 2. Compositional distinction under crystal build-up and matrix compaction.
    Google Scholar
    J. Geophys. Res., Solid Earth

  • 124, 3399– 3419 (2019 ).



  • Nomura, R. et al. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle.

    Article NatureCAS 473ADS, 199– 202 (2011 ).
    Google Scholar



  • Article Andrault, D. et al. Strong– liquid iron partitioning in Earth’s deep mantle. CAS NaturePubMed 487ADS, 354– 357 (2012 ).
    Google Scholar



  • Article Moresi, L. N. & & Solomatov, V. S. Numerical examination of 2D convection with exceptionally big viscosity variations. CAS Phys. FluidsPubMed 7ADS, 2154– 2162 (1995 ).
    Google Scholar



  • Farrell, K. A. O. & & Lowman, J. P. Emulating the thermal structure of round shell convection in plane-layer geometry mantle convection designs.

    Article Phys. Earth Planet. Inter.MATH 182ADS, 73– 84 (2010 ).
    Google Scholar


  • Tackley, P. J. & & King, S. D. Testing the tracer ratio technique for modeling active compositional fields in mantle convection simulations. Geochem. Geophys. Geosyst.

    Article 4ADS, 1– 15 (2003 ).
    Google Scholar

  • Schaller, M. et al. Swift: a modern-day highly-parallel gravity and smoothed particle hydrodynamics solver for cosmological and astrophysical applications. Preprint at (2023 ). Hirth, G. & & Kohlstedt, D. L. Water in the oceanic upper mantle: ramifications for rheology, melt extraction and the advancement of the lithosphere.

    Article Earth Planet. Sci. Lett.
    Google Scholar
    144

  • , 93– 108 (1996 ).http://arxiv.org/abs/2305.13380



  • Dziewonski, A. M. & & Anderson, D. L. Preliminary recommendation Earth design.

    Article Phys. Earth Planet. Inter.CAS 25ADS, 297– 356 (1981 ).
    Google Scholar


  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here