Garnero, E. J., McNamara, A. K. & & Shim, S. H. Continent-sized anomalous zones with low seismic speed at the base of Earth’s mantle. Nat. Geosci. 9, 481– 489 (2016 ).
Article
CAS
ADS
Google Scholar
Labrosse, S., Hernlund, J. W. & & Coltice, N. A taking shape thick lava ocean at the base of the Earth’s mantle. Nature 450, 866– 869 (2007 ).
Article
CAS
PubMed
ADS
Google Scholar
Canup, R. M. & & Asphaug, E. Origin of the Moon in a huge effect near completion of the Earth’s development. Nature 412, 708– 712 (2001 ).
Article
CAS
PubMed
ADS
Google Scholar
Kokubo, E. & & Ida, S. Orbital advancement of protoplanets embedded in a swarm of planetesimals. Icarus 114, 247– 257 (1995 ).
Article
ADS
Google Scholar
Cameron, A. G. W. & & Ward, W. R. The origin of the Moon. Abstr. Lunar Planet. Sci. Conf. 7, 120– 122 (1976 ).
ADS
Google Scholar
Ringwood, A. E. Volatile and siderophile aspect geochemistry of the Moon: a reappraisal. Earth Planet. Sci. Lett. 111, 537– 555 (1992 ).
Article
CAS
ADS
Google Scholar
Nie, N. X. & & Dauphas, N. Vapor drain in the protolunar disk as the cause for the deficiency in unstable aspects of the Moon. Astrophys. J. 884, L48 (2019 ).
Article
CAS
ADS
Google Scholar
Lee, C. T. A. et al. Upside-down distinction and generation of a prehistoric lower mantle. Nature 463, 930– 933 (2010 ).
Article
CAS
PubMed
ADS
Google Scholar
Christensen, U. R. & & Hofmann, A. W. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. 99, 19867– 19884 (1994 ).
Article
CAS
ADS
Google Scholar
Williams, C. D., Mukhopadhyay, S., Rudolph, M. L. & & Romanowicz, B. Primitive helium is sourced from seismically sluggish areas in the lowermost mantle. Geochem. Geophys. Geosyst. 20, 4130– 4145 (2019 ).
Article
CAS
ADS
Google Scholar
Mukhopadhyay, S. Early distinction and unstable accretion taped in deep-mantle neon and xenon. Nature 486, 101– 104 (2012 ).
Article
CAS
PubMed
ADS
Google Scholar
Desch, S. J. & & Robinson, K. L. A unified design for hydrogen in the Earth and Moon: nobody anticipates the Theia contribution. Chemie der Erde 79, 125546 (2019 ).
Article
ADS
Google Scholar
Pepin, R. O. & & Porcelli, D. Origin of honorable gases in the terrestrial worlds. Rev. Mineral. Geochem. 47, 191– 246 (2002 ).
Article
CAS
Google Scholar
Burke, K., Steinberger, B., Torsvik, T. H. & & Smethurst, M. A. Plume generation zones at the margins of big low shear speed provinces on the core– mantle border. Earth Planet. Sci. Lett. 265, 49– 60 (2008 ).
Article
CAS
ADS
Google Scholar
Will, P., Busemann, H., Riebe, M. E. I. & & Maden, C. Indigenous honorable gases in the Moon’s interior. Sci. Adv. 8, 1– 9 (2022 ).
Article
Google Scholar
Stewart, S. et al. The shock physics of huge effects: essential requirements for the formulas of state. AIP Conf. Proc. 2272, 080003 (2020 ).
Article
Google Scholar
Kegerreis, J. A., Eke, V. R., Massey, R. J., Sandnes, T. D. & & Teodoro, L. F. A. Immediate origin of the Moon as a post-impact satellite. Astrophys. J. Lett. 937, L40 (2022 ).
Article
ADS
Google Scholar
Deng, H. et al. Boosted blending in Giant Impact simulations with a brand-new Lagrangian technique. Astrophys. J. 870, 127 (2019 ).
Article
CAS
ADS
Google Scholar
Deng, H. et al. Primitive Earth mantle heterogeneity brought on by the Moon-forming Giant Impact? Astrophys. J. 887, 211 (2019 ).
Article
CAS
ADS
Google Scholar
Cottaar, S. & & Lekic, V. Morphology of seismically sluggish lower-mantle structures. Geophys. J. Int. 207, 1122– 1136 (2016 ).
Article
ADS
Google Scholar
Kegerreis, J. A. et al. Planetary huge effects: merging of high-resolution simulations utilizing effective round preliminary conditions and SWIFT. Mon. Not. R. Astron. Soc. 487,
5029– 5040( 2019).
Article &CAS ADS.
Google Scholar
Deguen, R., Landeau, M. & Olson, P. Turbulent metal– silicate blending, fragmentation, and equilibration in lava oceans. Earth Planet. Sci.
Lett.
391, 274– 287 (2014).
Article (* & ). CAS.ADS
Google Scholar Dauphas, N., Burkhardt, C., Warren, P. H. & Fang-Zhen, T. Geochemical arguments for an Earth-like Moon-forming impactor.
Philos. Trans. R. Soc. A 372 ,
20130244( 2014).
Article (* & ). (* )Pahlevan, K., Stevenson, D. J. & Eiler, J. M. Chemical fractionation in the silicate vapor environment of the Earth. ADS Earth Planet. Sci. Lett.
Google Scholar 301
, 433– 443 (2011 ).
Article
CAS Meier, M. M. M., Reufer, A. & & Wieler, R. On the origin and structure of Theia: restrictions from brand-new designs of the Giant Impact. ADS Icarus
Google Scholar 242
, 316– 328 (2014 ).
Article
CAS Robinson, K. L. et al. Water in progressed lunar rocks: proof for several tanks. ADS Geochim. Cosmochim. Acta
Google Scholar 188
, 244– 260 (2016 ).
Article
CAS Connolly, J. A. D. Computation of stage stabilities by direct programs: a tool for geodynamic modeling and its application to subduction zone decarbonation. ADS Earth Planet. Sci. Lett.
Google Scholar 236
, 524– 541 (2005 ).
Article
CAS Connolly, J. A. D. The geodynamic formula of state: what and how. ADS Geochem. Geophys. Geosyst.
Google Scholar 10
, 1– 19 (2009 ).
Stixrude, L. & & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals– II. Stage stabilities.
Article Geophys. J. Int.
Google Scholar 184
, 1180– 1213 (2011 ).
Article
CAS Nakajima, M. & & Stevenson, D. J. Melting and blending states of the Earth’s mantle after the Moon-forming effect. ADS Earth Planet. Sci. Lett.
Google Scholar 427
, 286– 295 (2015 ).
Article
CAS Gurnis, M. The results of chemical density distinctions on convective blending in the Earth’s mantle. ADS J. Geophys. Res., Solid Earth
Google Scholar 91
, 11407– 11419 (1986 ).
Tackley, P. J. in
Article The Core‐Mantle Boundary Region
Google Scholar (eds Gurnis, M., Wysession, M. E., Knittle, E. & & Buffet, B. A.) 231– 253 (American Geophysical Union, 1998).
Nakagawa, T., Tackley, P. J., Deschamps, F. & & Connolly, J. A. D. The impact of MORB and harzburgite structure on thermo-chemical mantle convection in a 3-D round shell with self-consistently computed mineral physics. Earth Planet. Sci. Lett. 296
, 403– 412 (2010 ).
Article
CAS Gu, T., Li, M., McCammon, C. & & Lee, K. K. M. Redox-induced lower mantle density contrast and result on mantle structure and primitive oxygen. ADS Nat. Geosci.
Google Scholar 9
, 723– 727 (2016 ).
Article
CAS Yuan, Q. & & Li, M. Instability of the African big low-shear-wave-velocity province due to its low intrinsic density. ADS Nat. Geosci.
Google Scholar 15
, 334– 339 (2022 ).
Article
CAS McNamara, A. K. & & Zhong, S. Thermochemical structures underneath Africa and the Pacific Ocean. ADS Nature
Google Scholar 437
, 1136– 1139 (2005 ).
Article
CAS
PubMed O’Neill, C., Marchi, S., Zhang, S. & & Bottke, W. Impact-driven subduction on the Hadean Earth. ADS Nat. Geosci.
Google Scholar 10
, 793– 797 (2017 ).
Article Hernlund, J. W. & & Houser, C. On the analytical circulation of seismic speeds in Earth’s deep mantle. ADS Earth Planet. Sci. Lett.
Google Scholar 265
, 423– 437 (2008 ).
Article
CAS Lei, W. et al. Worldwide adjoint tomography– design GLAD-M25. ADS Geophys. J. Int.
Google Scholar 223
, 1– 21 (2020 ).
Article Elkins-Tanton, L. T. Magma oceans in the inner Solar System. ADS Annu. Rev. Earth Planet. Sci.
Google Scholar 40
, 113– 139 (2012 ).
Article
CAS Abe, Y. Chemical and thermal advancement of the terrestrial lava ocean. ADS Phys. Earth Planet. Inter.
Google Scholar 1
, 27– 39 (1997 ).
Article Solomatov, V. S. in ADS Treatise on Geophysics
Google Scholar 1st edn, Vol. 9 (ed. Schubert, G.) 91– 119 (Elsevier, 2007).
Maurice, M. et al. Beginning of solid-state mantle convection and blending throughout lava ocean solidification. J. Geophys. Res., Planets 122
, 577– 598 (2017 ).
Article Boukaré, C. E., Parmentier, E. M. & & Parman, S. W. Timing of mantle reverse throughout lava ocean solidification. ADS Earth Planet. Sci. Lett.
Google Scholar 491
, 216– 225 (2018 ).
Article Labrosse, S., Morison, A., Deguen, R. & & Alboussière, T. Rayleigh– Bénard convection in a sneaking strong with melting and freezing at either or both its horizontal limits. ADS J. Fluid Mech.
Google Scholar 846
, 5– 36 (2018 ).
Article
MathSciNet
CAS
MATH Agrusta, R. et al. Mantle convection communicating with lava oceans. ADS Geophys. J. Int.
Google Scholar 220
, 1878– 1892 (2020 ).
Article
CAS Morison, A., Labrosse, S., Deguen, R. & & Alboussière, T. Timescale of reverse in a lava ocean cumulate. ADS Earth Planet. Sci. Lett.
Google Scholar 516
, 25– 36 (2019 ).
Article
CAS Becker, T. W., Kellogg, J. B. & & O’Connell, R. J. Thermal restrictions on the survival of primitive blobs in the lower mantle. ADS Earth Planet. Sci. Lett.
Google Scholar 171
, 351– 365 (1999 ).
Article
CAS Lock, S. J., Bermingham, K. R., Parai, R. & & Boyet, M. Geochemical restrictions on the origin of the Moon and conservation of ancient terrestrial heterogeneities. ADS Space Sci. Rev.
Google Scholar 216
, 1– 46 (2020 ).
Ballmer, M. D., Lourenço, D. L., Hirose, K., Caracas, R. & & Nomura, R. Reconciling magma-ocean formation designs with the contemporary structure of the Earth’s mantle.
Article Geochem. Geophys. Geosyst.
Google Scholar 18
, 2785– 2806 (2017 ).
Article
CAS Maas, C. & & Hansen, U. Dynamics of a terrestrial lava ocean under planetary rotation: a research study in round geometry. ADS Earth Planet. Sci. Lett.
Google Scholar 513
, 81– 94 (2019 ).
Article
CAS Williams, C. D. & & Mukhopadhyay, S. Capture of nebular gases throughout Earth’s accretion is protected in deep-mantle neon. ADS Nature
Google Scholar 565
, 78– 81 (2019 ).
Article
CAS
PubMed Mundl-Petermeier, A. et al. Temporal advancement of primitive tungsten-182 and ADS 3
Google Scholar He/
4 He signatures in the Iceland mantle plume. Chem. Geol. 525, 245– 259 (2019 ).
Article
CAS Li, M., McNamara, A. K. & & Garnero, E. J. Chemical intricacy of hotspots brought on by biking oceanic crust through mantle tanks. ADS Nat. Geosci.
Google Scholar 7
, 366– 370 (2014 ).
Article
CAS Mulyukova, E., Steinberger, B., Dabrowski, M. & & Sobolev, S. V. Survival of LLSVPs for billions of years in a strongly convecting mantle: replenishment and damage of chemical abnormality. ADS J. Geophys. Res., Solid Earth
Google Scholar 120
, 3824– 3847 (2015 ).
Article Jackson, M. G. et al. Ancient helium and tungsten isotopic signatures protected in mantle domains least customized by crustal recycling. ADS Proc. Natl Acad. Sci. U.S.A.
Google Scholar 117
, 30993– 31001 (2020 ).
Article
CAS
PubMed
PubMed Central Brown, J. M. & & Shankland, T. J. Thermodynamic criteria in the Earth as identified from seismic profiles. ADS Geophys. J. R. Astron. Soc.
Google Scholar 66
, 579– 596 (1981 ).
Article
MATH Stacey, F. D. A thermal design of the earth. ADS Phys. Earth Planet. Inter.
Google Scholar 15
, 341– 348 (1977 ).
Article Canup, R. M., Barr, A. C. & & Crawford, D. A. Lunar-forming effects: high-resolution SPH and AMR-CTH simulations. ADS Icarus
Google Scholar 222
, 200– 219 (2013 ).
Article Hosono, N., Saitoh, T. R., Makino, J., Genda, H. & & Ida, S. The Giant Impact simulations with density independent smoothed particle hydrodynamics. ADS Icarus
Google Scholar 271
, 131– 157 (2016 ).
Article Reinhardt, C. & & Stadel, J. Numerical elements of Giant Impact simulations. ADS Mon. Not. R. Astron. Soc.
Google Scholar 467
,
4252– 4263( 2017). (* ). . Ruiz-Bonilla, S. et al. Handling density discontinuities in planetary SPH simulations.
Article Mon. Not. R. Astron. Soc. ADS 512
Google Scholar,
4660– 4668( 2022).
& .
Article Hosono, N. & Karato, S. The impact of formula of state on the Giant Impact simulations.CAS J. Geophys. Res.,
PlanetsADS 127
Google Scholar, 1– 18 (2022).
. Hosono, N. et al. Unconvergence of very-large-scale Giant Impact simulations. Publ. Astron. Soc. Jpn
Article 69
Google Scholar, 1– 11 (2017 ).
Meier, T., Reinhardt, C. & & Stadel, J. G. The EOS/resolution conspiracy: merging in proto-planetary crash simulations. Mon. Not. R. Astron. Soc.
Article 1816
Google Scholar,
1806– 1816( 2021). &
(* ). Raskin, C. & Owen, J. M. Examining the precision of astrophysical disk simulations with a generalized hydrodynamical test issue. Astrophys. J.
Article 831ADS, 26 (2016 ).
Google Scholar
Gabriel, T. S. J. & & Allen-Sutter, H. Dependencies of mantle shock heating in pairwise accretion. Astrophys. J. Lett.
Article 915ADS, L32 (2021 ).
Google Scholar
Frontiere, N., Raskin, C. D. & & Owen, J. M. CRKSPH– a conservative recreating kernel smoothed particle hydrodynamics plan. J. Comput. Phys.
Article 332ADS, 160– 209 (2017 ).
Google Scholar
Article Rosswog, S. Astrophysical smooth particle hydrodynamics. MathSciNet New Astron. Rev.MATH 53ADS, 78– 104 (2009 ).
Google Scholar
Schaller, M. et al. SWIFT: SPH with inter-dependent fine-grained tasking. In
Article Astrophysics Source Code LibraryCAS, ascl-1805 (2018 ).ADS Ruiz-Bonilla, S., Eke, V. R., Kegerreis, J. A., Massey, R. J. && Teodoro, L. F. A. The result of pre-impact spin on the Moon-forming crash.
Google Scholar Mon. Not. R. Astron. Soc.
2870, 2861– 2870 (2021). .
Canup, R. M. Forming a Moon with an Earth-like structure through a huge effect. Science 338
ADS, 1052– 1056 (2012 ).
Google Scholar
Article
CAS Hopkins, P. F. A brand-new class of precise, mesh-free hydrodynamic simulation approaches. PubMed Mon. Not. R. Astron. Soc.PubMed Central 450ADS, 53– 110 (2015 ).
Google Scholar
Thompson, S. L. & & Lauson, H. S.
Article Improvements in the Chart D Radiation– Hydrodynamic Code. III. Modified Analytic Equation of State.CAS Sandia Report SC-RR-71 0174 (1972 ).ADS Melosh, H. J. A hydrocode formula of state for SiO
Google Scholar 2
Meteorit. World. Sci. 42
, 2079– 2098 (2007 ).
Fiquet, G. et al. Melting of peridotite to 140 gigapascals.
Article ScienceCAS 329ADS, 1516– 1518 (2010 ).
Google Scholar
Article Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: ramification for melting of the Earth throughout its history. CAS Earth Planet. Sci. Lett.PubMed 304ADS, 251– 259 (2011 ).
Google Scholar
Abe, Y. in
Article Evolution of the Earth and PlanetsCAS (eds Takahashi, E., Jeanloz, R. & & Rubie, D.) 41– 54 (American Geophysical Union, 1993).ADS Miyazaki, Y. & & Korenaga, J. On the timescale of lava ocean solidification and its chemical effects: 2. Compositional distinction under crystal build-up and matrix compaction.
Google Scholar J. Geophys. Res., Solid Earth
124, 3399– 3419 (2019 ).
Nomura, R. et al. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle.
Article NatureCAS 473ADS, 199– 202 (2011 ).
Google Scholar
Article Andrault, D. et al. Strong– liquid iron partitioning in Earth’s deep mantle. CAS NaturePubMed 487ADS, 354– 357 (2012 ).
Google Scholar
Article Moresi, L. N. & & Solomatov, V. S. Numerical examination of 2D convection with exceptionally big viscosity variations. CAS Phys. FluidsPubMed 7ADS, 2154– 2162 (1995 ).
Google Scholar
Farrell, K. A. O. & & Lowman, J. P. Emulating the thermal structure of round shell convection in plane-layer geometry mantle convection designs.
Article Phys. Earth Planet. Inter.MATH 182ADS, 73– 84 (2010 ).
Google Scholar
Tackley, P. J. & & King, S. D. Testing the tracer ratio technique for modeling active compositional fields in mantle convection simulations. Geochem. Geophys. Geosyst.
Article 4ADS, 1– 15 (2003 ).
Google Scholar
Schaller, M. et al. Swift: a modern-day highly-parallel gravity and smoothed particle hydrodynamics solver for cosmological and astrophysical applications. Preprint at (2023 ). Hirth, G. & & Kohlstedt, D. L. Water in the oceanic upper mantle: ramifications for rheology, melt extraction and the advancement of the lithosphere.
Article Earth Planet. Sci. Lett.
Google Scholar 144
, 93– 108 (1996 ).http://arxiv.org/abs/2305.13380
Dziewonski, A. M. & & Anderson, D. L. Preliminary recommendation Earth design.
Article Phys. Earth Planet. Inter.CAS 25ADS, 297– 356 (1981 ).
Google Scholar