Minutes-duration optical flares with supernova luminosities

0
6


  • Drout, M. R. et al. Quickly progressing and luminescent transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014 ).

    Article
    ADS

    Google Scholar

  • Kasen, D. in Handbook of Supernovae (eds Alsabti, A. & & Murdin, P. )939– 965 (Springer, 2017).

  • Prentice, S. J. et al. The Cow: discovery of a luminescent, hot, and quickly progressing short-term. Astrophys. J. Lett. 865, L3 (2018 ).

    Article
    ADS

    Google Scholar

  • Ho, A. Y. Q. et al. A look for extragalactic quick blue optical transients in ZTF and the rate of AT2018cow-like transients. Astrophys. J. 949, 120 (2023 ).

    Article
    ADS

    Google Scholar

  • Margutti, R. et al. An ingrained X-ray source shines through the aspherical AT 2018cow: exposing the inner functions of the most luminescent fast-evolving optical transients. Astrophys. J. 872, 18 (2019 ).

    Article
    ADS
    CAS

    Google Scholar

  • Rivera Sandoval, L. E. et al. X-ray Swift observations of SN 2018cow. Mon. Not. R. Astron. Soc. 480, L146– L150 (2018 ).

    Article.ADS
    Google Scholar
    .

  • Yao, Y. et al. The X-ray and radio loud quick blue optical short-term AT2020mrf: ramifications for an emerging class of engine-driven enormous star surges. Astrophys. J. 934, 104 (2022 ).

    Article
    ADS

    Google Scholar

  • Chen, Y. et al. Late-time HST observations of AT 2018cow II: development of a UV-bright underlying source 2-4 years post-explosion. Astrophys. J. 955, 43 (2023 ).

  • Pasham, D. R. et al. Proof for a compact item in the consequences of the extragalactic short-term AT2018cow. Nat. Astron. 6, 249– 258 (2021 ).

    Article
    ADS

    Google Scholar

  • Zhang, W. et al. A possible 250 s X-ray quasi-periodicity in the quick blue optical short-term AT2018cow. Res. Astron. Astrophys. 22, 125016 (2022 ).

    Article
    ADS

    Google Scholar

  • Ho, A. Y. Q. et al. The Koala: a quick blue optical short-term with luminescent radio emission from a starburst dwarf galaxy at z = 0.27. Astrophys. J. 895, 49 (2020 ).

    Article
    ADS
    CAS

    Google Scholar

  • Coppejans, D. L. et al. A slightly relativistic outflow from the energetic, fast-rising blue optical short-term CSS161010 in a dwarf galaxy. Astrophys. J. Lett. 895, L23 (2020 ).

    Article
    ADS
    CAS

    Google Scholar

  • Munoz-Arancibia, A. et al. ALeRCE/ZTF Transient Discovery Report for 2022-09-07. Short-term Name Server Discovery Report, No. 2022– 2602 (2022 ).

  • Förster, F. et al. The Automatic Learning for the Rapid Classification of Events (ALeRCE) alert broker. Astron. J. 161, 242 (2021 ).

    Article
    ADS

    Google Scholar

  • Ho, A. Y. Q. et al. Keck/LRIS observations of AT2022tsd, a fast-rising optical short-term coincident with a z= 0.256 galaxy. Short-term Name Server AstroNote 2022-199 (2022 ).

  • Planck Collaboration. Planck 2018 outcomes. VI. Cosmological criteria. Astron. Astrophys. 641, A6 (2020 ).

    Article

    Google Scholar

  • Ho, A. Y. Q. & & Perley, D. A. VLA Ku-band detection of AT2022tsd. Short-term Name Server AstroNote 2022-205 (2022 ).

  • Schulze, S., Ho, A. Y. Q., Perley, D. A., Yan, L. & & Fremling, C. Swift X-ray detection of AT2022tsd. Short-term Name Server AstroNote 2022-207 (2022 ).

  • Metzger, B. D. Luminous quickly blue optical transients and type Ibn/Icn SNe from Wolf-Rayet/Black Hole mergers. Astrophys. J. 932, 84 (2022 ).

    Article
    ADS

    Google Scholar

  • Ho, A. Y. Q. et al. Discovery of minute-timescale optical flares with supernova-like luminosities at the position of the luminescent quick blue optical short-term AT2022tsd (the “Tasmanian Devil”). Short-term Name Server AstroNote 2022-267 (2022 ).

  • Matthews, D. et al. Chandra-NuSTAR detection of X-ray emission at the area of FBOT AT2022tsd. Short-term Name Server AstroNote 2022-218 (2022 ).

  • Perley, D. A. et al. The quick, luminescent ultraviolet short-term AT2018cow: severe supernova, or disturbance of a star by an intermediate-mass great void?. Mon. Not. R. Astron. Soc. 484,
    1031– 1049( 2019).

    ArticleADS &CAS (* ).
    Google Scholar
    Quataert, E., Lecoanet, D. & Coughlin, E. R. Black hole accretion discs and luminescent transients in stopped working supernovae from non-rotating supergiants.

  • Mon. Not. R. Astron. Soc. Lett. 485 ,
    L83– L88( 2019).
    (* ). (* ).

    Article.ADS Kuin, N. P. M. et al. Swift spectra of AT2018cow: a white dwarf tidal disturbance occasion?.CAS Mon. Not. R. Astron. Soc.

    Google Scholar
    487

  • ,
    2505– 2521( 2019). (* ). .

    Article Beck, R. et al. PS1-STRM: neural network source category and photometric redshift brochure for PS1 3π DR1. ADS Mon. Not. R. Astron. Soc. CAS 500
    Google Scholar
    , 1633– 1644( & 2021). (* ).

  • Oke, J. B. & Gunn, J. E. Secondary basic stars for outright spectrophotometry. Astrophys. J.

    Article 266ADS, 713– 717 (1983 ).
    Google Scholar



  • Finkbeiner, D. P., Davis, M. & & Schlegel, D. J. Extrapolation of stellar dust emission at 100 microns to cosmic microwave background radiation frequencies utilizing FIRAS.

    Article Astrophys. J.ADS 524CAS, 867 (1999 ).
    Google Scholar



  • Schlegel, D. J., Finkbeiner, D. P. & & Davis, M. Maps of dust infrared emission for usage in evaluation of reddening and cosmic microwave background radiation foregrounds.

    Article Astrophys. J.ADS 500CAS, 525 (1998 ).
    Google Scholar


  • Schlafly, E. F. & & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey excellent spectra and recalibrating SFD. Astrophys. J.

    Article 737ADS, 103 (2011 ).
    Google Scholar


  • van der Walt, S. J., Crellin-Quick, A. & & Bloom, J. S. SkyPortal: a huge information platform. J. Open Source Softw.

    Article 4ADS, 1247 (2019 ).
    Google Scholar


  • Coughlin, M. W. et al. An information science platform to allow time-domain astronomy. Astrophys. J. Suppl. Ser.

    Article 267ADS, 31 (2023 ).
    Google Scholar


  • Perley, D. A. et al. Real-time discovery of AT2020xnd: a quickly, luminescent ultraviolet short-term with very little radioactive ejecta. Mon. Not. R. Astron. Soc.

    Article 508ADS,
    5138– 5147( 2021).

    Google Scholar
    (* ).

  • . Jiang, J. A. et al. MUSSES2020J: the earliest discovery of a quick blue ultraluminous short-term at redshift 1.063. Astrophys. J. Lett.

    Article 933ADS, L36 (2022 ).CAS

    Google Scholar

  • Pursiainen, M. et al. Quickly progressing transients in the Dark Energy Survey. Mon. Not. R. Astron. Soc. 481

    Article,
    894– 917( 2018).
    ADS (* ).
    Google Scholar
    .

  • Arcavi, I. et al. Quickly increasing transients in the supernova– superluminous supernova space. Astrophys. J. 819

    Article, 35 (2016 ).ADS
    CAS

    Google Scholar

  • Gal-Yam, A. in Handbook of Supernovae (eds Alsabti, A. & & Murdin, P.) 1– 43 (Springer, 2016). Ho, A. Y. Q. et al. AT2018cow: a luminescent millimeter short-term.

    Article Astrophys. J.ADS 871
    Google Scholar
    , 73 (2019 ).


  • Ho, A. Y. Q. et al. Luminescent millimeter, radio, and X-ray emission from ZTF 20acigmel (AT 2020xnd). Astrophys. J. 932

    Article, 116 (2022 ).ADS
    CAS

    Google Scholar

  • Bright, J. S. et al. Radio and X-ray observations of the luminescent quick blue optical short-term AT 2020xnd. Astrophys. J. 926, 112 (2022 ).

    Article
    ADS

    Google Scholar

  • Phinney, E. S. in Symposium – International Astronomical Union, Volume 136: The Galactic Center 543– 553 (Kluwer, 1989). Levan, A. J. et al. A very luminescent panchromatic outburst from the nucleus of a far-off galaxy.

    Article ScienceADS 333
    Google Scholar
    , 199– 202 (2011 ).



  • Burrows, D. N. et al. Relativistic jet activity from the tidal disturbance of a star by an enormous great void. Nature

    Article 476ADS, 421– 424 (2011 ).CAS
    PubMed

    Google Scholar


  • Cenko, S. B. et al. Swift J2058.4 +0516: discovery of a possible 2nd relativistic tidal disturbance flare? Astrophys. J.

    Article 753ADS, 77 (2012 ).CAS
    PubMed

    Google Scholar

  • Matthews, D. et al. Extraordinary X-ray emission from the quick blue optical short-term AT2022tsd. Res. Not. AAS 7, 126 (2023 ).

    Article
    ADS

    Google Scholar

  • Rybicki, G. B. & & Lightman, A. P. Radiative Processes in Astrophysics (Wiley, 1986). Nayana, A. J. & & Chandra, P. uGMRT observations of a blue and quick optical short-term– AT 2018cow.

    Article Astrophys. J. Lett.ADS 912
    Google Scholar
    , L9 (2021 ).


  • Fender, R. P. et al. Spectral proof for an effective compact jet from XTE J1118 +480. Mon. Not. R. Astron. Soc. 322,
    L23– L27( 2001).

    Article (* ). ADS.
    Google Scholar
    Tetarenko, A. J. et al. Determining essential jet homes with multiwavelength quick timing of the great void X-ray binary MAXI J1820 +070.

  • Mon. Not. R. Astron. Soc. 504 ,
    3862– 3883( 2021). (* ).
    .

    ArticleADS
    Google Scholar
    Fender, R. P. et al. Comprehensive protection of particle velocity and kinetic feedback from the excellent mass great void V404 Cygni.

  • Mon. Not. R. Astron. Soc. 518 ,
    1243– 1259( 2023). (* ).
    .

    ArticleADS Falcke, H. et al. The synchronised spectrum of Sagittarius A * from 20 centimeters to 1 millimeter and the nature of the millimeter excess. CAS Astrophys. J.
    Google Scholar
    499

  • , 731 (1998 ).

    Article Chevalier, R. A. Synchrotron self-absorption in radio supernovae. ADS Astrophys. J.
    Google Scholar
    499

  • , 810 (1998 ).

    Article Blandford, R. D. & & Königl, A. Relativistic jets as compact radio sources. ADS Astrophys. J.
    Google Scholar
    232

  • , 34– 48 (1979 ).

    Article
    ADS Fulton, M. et al. Pan-STARRS observations of AT2022tsd. Short-term Name Server AstroNote 2022-206 (2022 ).
    Google Scholar
    Chomiuk, L., Metzger, B. D. & & Shen, K. J. New insights into classical novae.

  • Annu. Rev. Astron. Astrophys. 59 , 391– 444 (2021 ).

    Article
    ADS
    CAS Fremling, C. et al. The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic category and the redshift efficiency of regional galaxy brochures.
    Google Scholar
    Astrophys. J.

  • 895

  • , 32 (2020 ).

    Article
    ADS Perley, D. A. et al. The Zwicky Transient Facility Bright Transient Survey. II. A public analytical sample for checking out supernova demographics.
    Google Scholar
    Astrophys. J.

  • 904, 35 (2020 ).

    Article
    ADS
    CAS Szkody, P. et al. Catastrophic variables in the 2nd year of the Zwicky Transient Facility.
    Google Scholar
    Astron. J.

  • 162, 94 (2021 ).

    Article
    ADS
    CAS Polzin, A. et al. The luminosity stage area of galactic and extragalactic X-ray transients out to intermediate redshifts. Preprint at
    Google Scholar
    (2023 ).

  • Coppejans, D. L. & & Knigge, C. The case for jets in catastrophic variables. New Astron. Rev. 89, 101540 (2020 ).

    Article
    ADS
    CAS Morales-Rueda, L. & & Marsh, T. R. Spectral atlas of dwarf novae in outburst.
    Google Scholar
    Mon. Not. R. Astron. Soc.

  • 332https://arxiv.org/abs/2211.01232, 814– 826 (2002).

  • .

    Article Han, Z. et al. Spectroscopic homes of the dwarf nova-type catastrophic variables observed by LAMOST.
    Google Scholar
    Publ. Astron. Soc. Jpn.

  • 72, 76( 2020). & (* ).

    Article Fertig, D., Mukai, K., Nelson, T. & Cannizzo, J. K. The fall and the increase of X-rays from dwarf novae in outburst: RXTE observations of VW Hydri and WW Ceti. ADS Publ. Astron. Soc. Pac.CAS 123
    Google Scholar
    , 1054 (2011 ).



  • Bruch, A. A relative research study of the strength of flickering in catastrophic variables.

    Article Mon. Not. R. Astron. Soc. ADS 503
    Google Scholar
    , 953– 971 (2021).

  • (* ). Ilbert, O. et al. in(* )Panoramic Views of Galaxy Formation and Evolution ASP Conference Series Vol. 399 169 (Astronomical Society of the Pacific, 2008).

    Article Lomb, N. R. Least-squares frequency analysis of unequally spaced information. ADS Astrophys. Area Sci.
    Google Scholar
    39

  • , 447– 462 (1976 ).

    Article Scargle, J. D. Studies in huge time series analysis. II. Analytical elements of spectral analysis of unevenly spaced information. ADS Astrophys. J.
    Google Scholar
    263

  • , 835– 853 (1982 ).

  • Tsvetkova, A. et al. The Konus– Wind Catalog of Gamma-Ray Bursts with Known Redshifts. II. Waiting-mode bursts concurrently spotted by Swift/BAT. Astrophys. J. 908

    Article, 83 (2021 ).ADS

    Google Scholar

  • Cano, Z., Wang, S.-Q., Dai, Z.-G. & & Wu, X.-F. The Observer’s Guide to the Gamma-Ray Burst Supernova Connection. Adv. Astron. 2017

    Article, 8929054 (2017 ).ADS

    Google Scholar

  • Ho, A. Y. Q. et al. Gemini, Swift, and VLA observations of AT2022abfc, a radio-loud quick optical short-term coincident with a z= 0.212 galaxy. Short-term Name Server AstroNote 2022-275 (2022 ).

    Article Readhead, A. C. S. Equipartition brightness temperature level and the inverted Compton disaster. ADS Astrophys. J.
    Google Scholar
    426

  • , 51– 59 (1994 ).

    Article Longair, M. S. ADS High Energy Astrophysics
    Google Scholar
    (Cambridge Univ. Press, 2011).

  • Moffet, A. T. in Galaxies and deep space( eds Sandage, A. &, Sandage, M. & Kristian, J.)( Univ. Chicago Press, 1975).

  • Chen, Y. et al. Late-time HST observations of AT 2018cow I: additional restraints on the fading timely emission and thermal homes 50-60 days post-explosion. Astrophys. J. 955, 42 (2023 ).

    Article Gottlieb, O., Tchekhovskoy, A. & & Margutti, R. Shocked jets in CCSNe can power the zoo of quick blue optical transients. ADS Mon. Not. R. Astron. Soc.
    Google Scholar
    513

  • ,
    3810– 3817( 2022). & .

  • Margalit, B. & Quataert, E. Thermal electrons in slightly relativistic synchrotron blast waves.

  • Astrophys. J. Lett
    .
    923 , L14 (2021 ). .(* ).

  • Wright, A. H. et al. Galaxy and mass assembly: precise panchromatic photometry from optical priors utilizing LAMBDAR. Mon. Not. R. Astron. Soc.

    Article 460ADS,
    765– 801( 2016).
    CAS (* ).
    Google Scholar
    .

  • Chambers, K. C. et al. The Pan-STARRS1 studies. & Preprint at ( 2019). Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population reasoning with Prospector.

    Article Astrophys. J. Suppl.
    Ser.
    ADS 254CAS, 22( 2021). (* & ).
    Google Scholar
    .

  • (* )Conroy, C., Gunn, J. E. & White, M. The proliferation of unpredictabilities in excellent population synthesis modeling. I. The significance of unpredictable elements of excellent development and the preliminary mass function to the obtained physical homes of galaxies. Astrophys. J. 699

    Article, 486 (2009 ).ADS
    CAS

    Google Scholar

  • Foreman-Mackey, D., Hogg, D. W. & & Morton, T. D. Exoplanet population reasoning and the abundance of Earth analogs from loud, insufficient brochures. https://arxiv.org/abs/1612.05560 Astrophys. J.

  • 795, 64 (2014 ).

    Article
    ADS Byler, N., Dalcanton, J. J., Conroy, C. & & Johnson, B. D. Nebular continuum and line emission in excellent population synthesis designs. CAS Astrophys. J.
    Google Scholar
    840

  • , 44 (2017 ).

    Article Speagle, J. S. DYNESTY: a vibrant embedded tasting bundle for approximating Bayesian posteriors and proofs. ADS Mon. Not. R. Astron. Soc.
    Google Scholar
    493

  • ,
    3132– 3158( 2020). (* ). Sánchez-Blázquez, P. et al. Medium-resolution Isaac Newton Telescope library of empirical spectra.

    Article Mon. Not. R. Astron. Soc. ADS 371
    Google Scholar
    ,
    703– 718( 2006). (* ).

  • .(* )Schulze, S. et al. The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy circulation functions and environment reliance of core-collapse supernovae. Astrophys. J. Suppl. Ser. 255

    Article, 29 (2021 ).ADS

    Google Scholar


  • Chabrier, G. Galactic substellar and excellent preliminary mass function. Publ. Astron. Soc. Pac.

    Article 115ADS, 763 (2003 ).
    Google Scholar


  • Calzetti, D. et al. The dust material and opacity of actively star-forming galaxies. Astrophys. J.

    Article 533ADS, 682 (2000 ).
    Google Scholar


  • Quataert, E. & & Kasen, D. Swift 1644 +57: the longest gamma-ray burst? Mon. Not. R. Astron. Soc.

    Article 419ADS, L1– L5 (2012).CAS
    Google Scholar

  • Woosley, S. E. Gamma-ray bursts from excellent mass accretion disks around great voids. Astrophys. J. 405

    Article,
    273– 277( 1993).
    ADS (* & ).
    Google Scholar

  • . Woosley, S. E. & Heger, A. Long gamma-ray transients from collapsars. Astrophys. J. 752

    Article, 32 & (2012).ADS
    Google Scholar
    .

  • Kashiyama, K. & Quataert, E. Fast luminescent blue transients from newborn great voids. Mon. Not. R. Astron. Soc. 451

    Article,
    2656– 2662( 2015). &ADS
    Google Scholar
    .

  • (* ). Kumar, P. & Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys.
    Rep.
    561

    Article, 1– 109( 2015). ADS.CAS
    Google Scholar
    .

  • Lyman, J. D. et al. Studying the environment of AT 2018cow with MUSE. Mon. Not. R. Astron. Soc. 495,
    992– 999 ( 2020). (* ).

    Article.(* ). ADS.
    Google Scholar
    Maund, J. R. et al. A flash of polarized optical light indicate an aspherical ‘cow’.

  • Mon. Not. R. Astron. Soc. 521 ,
    3323– 3332( 2023). (* ).
    .

    ArticleADS Racusin, J. L. et al. Broadband observations of the naked-eye γ-ray burst GRB 080319B. CAS Nature
    Google Scholar
    455

  • , 183– 188 (2008 ).

    Article
    ADS

    Google Scholar
    Kann, D. A. et al. The afterglows of Swift-era gamma-ray bursts. I. Comparing pre-Swift and Swift-era long/soft (type II) GRB optical afterglows.

  • Astrophys. J. 720 , 1513 (2010 ).

    Article
    ADS
    CAS

    Google Scholar
    Nesci, R. et al. Multiwavelength flare observations of the blazar S5 1803 +784.

  • Mon. Not. R. Astron. Soc. 502 ,
    6177– 6187( 2021).
    (* ).

    Article.ADS
    Google Scholar
    Kasliwal, M. M. et al. Illuminating gravitational waves: a concordant image of photons from a neutron star merger.

  • Science 358 , 1559– 1565 (2017 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar
    Villar, V. A., Berger, E., Metzger, B. D. & & Guillochon, J. Theoretical designs of optical transients. I. A broad expedition of the period– luminosity stage area.

  • Astrophys. J. 849 , 70 (2017 ).

    Article
    ADS
    CAS Cowperthwaite, P. S. et al. The electro-magnetic equivalent of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and contrast to kilonova designs.
    Google Scholar
    Astrophys. J. Lett.

  • 848, L17 (2017 ).

    Article
    ADS Drout, M. R. et al. Light curves of the neutron star merger GW170817/SSS17a: ramifications for r-process nucleosynthesis. CAS Science
    Google Scholar
    358

  • , 1570– 1574 (2017 ).

    Article
    ADS
    CAS Andreoni, I. et al. An extremely luminescent jet from the disturbance of a star by an enormous great void. PubMed Nature
    Google Scholar
    612

  • , 430– 434 (2022 ).

    Article
    ADS

    Google Scholar
    Galama, T. J. et al. An uncommon supernova in the mistake box of the γ-ray burst of 25 April 1998.

  • Nature 395 , 670– 672 (1998 ).

    Article
    ADS

    Google Scholar

  • Campana, S. et al. The association of GRB 060218 with a supernova and the development of the shock wave. Nature 442, 1008– 1010 (2006 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • D’Elia, V. et al. GRB 171205A/SN 2017iuk: a regional low-luminosity gamma-ray burst. Astron. Astrophys. 619, A66 (2018 ).

    Article
    ADS
    CAS Ho, A. Y. Q. et al. SN 2020bvc: a broad-line type Ic supernova with a double-peaked optical light curve and a luminescent X-ray and radio equivalent. PubMed Astrophys. J.
    Google Scholar
    902

  • , 86 (2020 ).

    Article
    ADS Zauderer, B. A. et al. Birth of a relativistic outflow in the uncommon γ-ray short-term Swift J164449.3 +573451. CAS Nature
    Google Scholar
    476

  • , 425– 428 (2011 ).

    Article
    ADS
    CAS Yuan, Q., Wang, Q. D., Lei, W.-H., Gao, H. & & Zhang, B. Catching jetted tidal disturbance occasions early in millimetre. PubMed Mon. Not. R. Astron. Soc.
    Google Scholar
    461

  • ,
    3375– 3384( 2016).
    (* ). .(* )Sheth, K. et al. Millimeter observations of GRB 030329: continued proof for a two-component jet.

    Article Astrophys. J. Lett.
    Google Scholar
    595

  • , L33 (2003 ).

    Article Perley, D. A. et al. The afterglow of GRB 130427A from 1 to 10ADS 16CAS GHz.
    Google Scholar
    Astrophys. J.

  • 781, 37 (2014 ).

    Article
    ADS Laskar, T. et al. ALMA light curve constrains revitalized reverse shocks and jet magnetization in GRB 161219B. CAS Astrophys. J.PubMed 862
    Google Scholar
    , 94 (2018 ).



  • Laskar, T. et al. A reverse shock in GRB 181201A.

    Article Astrophys. J.ADS 884CAS, 121 (2019 ).
    Google Scholar



  • Kulkarni, S. R. et al. Radio emission from the uncommon supernova 1998bw and its association with the γ-ray burst of 25 April 1998.

    Article NatureADS 395
    Google Scholar
    , 663– 669 (1998 ).




  • Perley, D. A., Schulze, S. & & de Ugarte Postigo, A. GRB 171205A: ALMA observations. GRB Coordinates Network, Circular Service, No. 22252, # 1 (2017 ). Weiler, K. W. et al. Long-lasting radio tracking of SN 1993J.

    Article Astrophys. J.ADS 671
    Google Scholar
    , 1959 (2007 ).



  • Article Soderberg, A. M. et al. A relativistic type Ibc supernova without a discovered γ-ray burst. ADS Nature
    Google Scholar
    463

  • , 513– 515 (2010 ).

    Article
    ADS
    CAS Horesh, A. et al. A extensive and early millimetre and centimetre wave and X-ray research study of SN 2011dh: a non-equipartition blast wave broadening into an enormous excellent wind.
    Google Scholar
    Mon. Not. R. Astron. Soc.

  • 436,
    1258– 1267( 2013). (* ).
    .

    Article Corsi, A. et al. A multi-wavelength examination of the radio-loud supernova PTF11qcj and its circumstellar environment. ADS Astrophys. J.CAS 782
    Google Scholar
    , 42 (2014 ).


  • Maeda, K. et al. The last months of enormous star development from the circumstellar environment around SN Ic 2020oi. Astrophys. J.

    Article 918ADS, 34 (2021 ).CAS

    Google Scholar


  • Mangano, V., Burrows, D. N., Sbarufatti, B. & & Cannizzo, J. K. The conclusive X-ray light curve of Swift J164449.3 +573451. Astrophys. J.

    Article 817ADS, 103 (2016 ).CAS
    PubMed

    Google Scholar

  • Kouveliotou, C. et al. Chandra observations of the X-ray environments of SN 1998bw/GRB 980425. Astrophys. J. 608, 872 (2004 ).

    Article
    ADS

    Google Scholar

  • Tiengo, A., Mereghetti, S., Ghisellini, G., Tavecchio, F. & & Ghirlanda, G. Late development of the X-ray afterglow of GRB 030329. Astron. Astrophys. 423, 861– 865 (2004 ).

    Article
    ADS

    Google Scholar

  • Soderberg, A. M., Chevalier, R. A., Kulkarni, S. R. & & Frail, D. A. The radio and X-ray luminescent SN 2003bg and the circumstellar density variations around radio supernovae. Astrophys. J. 651

    Article, 1005 (2006 ).ADS
    CAS

    Google Scholar

  • Margutti, R. et al. The signature of the main engine in the weakest relativistic surges: GRB 100316D. Astrophys. J. 778

    Article, 18 (2013 ).ADS

    Google Scholar

  • Dwarkadas, V. V. & & Gruszko, J. What are released X-ray light curves informing us about young supernova growth?. Mon. Not. R. Astron. Soc. 419

    Article,
    1515– 1524( 2012).ADS
    Google Scholar

  • & Mucciarelli, P., Zampieri, L., Treves, A., Turolla, R. & Falomo, R. X-ray and optical irregularity of the ultraluminous X-ray source NGC 1313 X-2. Astrophys. J. 658

    Article, 999 (2007 ).ADS
    CAS

    Google Scholar

  • Kasliwal, M. M. et al. GRB 070610: a curious galactic short-term. Astrophys. J. 678

    Article, 1127 (2008 ).ADS
    CAS

    Google Scholar

  • Stefanescu, A. et al. Really quickly optical flaring from a possible brand-new Galactic magnetar. Nature 455

    Article, 503– 505 (2008 ).ADS

    Google Scholar



  • Castro-Tirado, A. J. et al. Flares from a prospect Galactic magnetar recommend a missing out on link to dim separated neutron stars.

    Article NatureADS 455
    Google Scholar
    , 506– 509 (2008 ).



  • Article
    ADS Svinkin, D. et al. A brilliant γ-ray flare translated as a huge magnetar flare in NGC 253. CAS Nature
    Google Scholar
    589

  • , 211– 213 (2021 ).

    Article
    ADS
    CAS Frederiks, D. et al. Huge flare in SGR 1806-20 and its Compton reflection from the Moon.
    Google Scholar
    Astron. Lett.

  • 33, 1– 18 (2007 ).

    Article
    ADS
    CAS Hankins, T. H., Kern, J. S., Weatherall, J. C. & & Eilek, J. A. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar. PubMed Nature
    Google Scholar
    422

  • , 141– 143 (2003 ).

    Article
    ADS
    CAS Fender, R. P., Pooley, G. G., Brocksopp, C. & & Newell, S. J. Rapid infrared flares in GRS 1915 +105: proof for infrared synchrotron emission. PubMed Mon. Not. R. Astron. Soc.
    Google Scholar
    290

  • ,
    L65– L69 ( 1997). (* ). . van Velzen, S. et al. Seventeen tidal disturbance occasions from the very first half of ZTF study observations: going into a brand-new age of population research studies.

    Article Astrophys. J.ADS 908CAS, 4 (2021 ).PubMed

    Google Scholar

  • Payne, A. V. et al. Chandra, HST/STIS, NICER, Swift, and TESS information the flare development of the duplicating nuclear short-term ASASSN-14ko. Astrophys. J. 951

    Article, 134 (2023 ).ADS
    CAS

    Google Scholar

  • Marrone, D. P. et al. An X-ray, infrared, and submillimeter flare of Sagittarius A *. Astrophys. J. 682, 373 (2008 ).

    Article
    ADS
    CAS
    PubMed Abramowski, A. et al. The 2010 extremely high energy γ-ray flare and 10 years of multi-wavelength observations of M 87.
    Google Scholar
    Astrophys. J.

  • 746, 151 (2012 ).

    Article
    ADS Miniutti, G. et al. Duplicating tidal interruptions in GSN 069: long-lasting development and restraints on quasi-periodic eruptions’ designs.
    Google Scholar
    Astron. Astrophys.

  • 670, A93 (2023 ).

    Article van Dyk, S. D., Weiler, K. W., Sramek, R. A. & & Panagia, N. SN 1988Z: the most remote radio supernova. ADS Astrophys. J. Lett.
    Google Scholar
    419

  • , L69 (1993 ).

    Article Weiler, K. W., Sramek, R. A., Panagia, N., van der Hulst, J. M. & & Salvati, M. Radio supernovae. ADS Astrophys. J.
    Google Scholar
    301

  • , 790– 812 (1986 ).

    Article
    ADS Soderberg, A. M. et al. The radio and X-ray-luminous type Ibc supernova 2003L.
    Google Scholar
    Astrophys. J.

  • 621, 908 (2005 ).

    Article
    ADS

    Google Scholar
    Salas, P., Bauer, F. E., Stockdale, C. & & Prieto, J. L. SN 2007bg: the complex circumstellar medium around among the most radio-luminous broad-lined Type Ic supernovae.

  • Mon. Not. R. Astron. Soc. 428 ,
    1207– 1217( 2013).
    .

    Article
    Google Scholar
    (* & )Alexander, K. D., Berger, E., Guillochon, J., Zauderer, B. A. & Williams, P. K. G. Discovery of an outflow from radio observations of the tidal disturbance occasion ASASSN-14li.

  • Astrophys. J. Lett. 819 , L25 (2016 ).

    Article
    ADS

    Google Scholar
    Laskar, T., Coppejans, D. L., Margutti, R. & & Alexander, K. D. GRB 171205A: VLA detection. GRB Coordinates Network, Circular Service, No. 22216, # 1 (2017 ).

  • Dong, D. Z. et al. A short-term radio source constant with a merger-triggered core collapse supernova. Science 373, 1125– 1129 (2021 ).

    Article
    ADS
    CAS

    Google Scholar

  • Mooley, K. P. et al. Late-time development and modeling of the off-axis gamma-ray burst prospect FIRST J141918.9 +394036. Astrophys. J. 924

    Article, 16 (2022 ).ADS
    CAS

    Google Scholar

  • Graham, M. J. et al. The Zwicky Transient Facility: Science Objectives. Publ. Astron. Soc. Pac. 131

    Article, 078001 (2019 ).ADS

    Google Scholar

  • Bellm, E. C. et al. The Zwicky Transient Facility: system summary, efficiency, and very first outcomes. Publ. Astron. Soc. Pac. 131

    Article, 018002 (2019 ).ADS

    Google Scholar

  • Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pac. 132, 038001 (2020 ).

    Article
    ADS
    CAS
    PubMed Zackay, B., Ofek, E. O. & & Gal-Yam, A. Proper image subtraction– optimum short-term detection, photometry, and hypothesis screening.
    Google Scholar
    Astrophys. J.

  • 830, 27 (2016 ).

    Article
    ADS Masci, F. J. et al. The Zwicky Transient Facility: information processing, items, and archive. CAS Publ. Astron. Soc. Pac.
    Google Scholar
    131

  • , 018003 (2019 ).

    Article Patterson, M. T. et al. The Zwicky Transient Facility alert circulation system. ADS Publ. Astron. Soc. Pac.
    Google Scholar
    131

  • , 018001 (2019 ).

    Article Duev, D. A. et al. Real-bogus category for the Zwicky Transient Facility utilizing deep knowing. ADS Mon. Not. R. Astron. Soc.
    Google Scholar
    489

  • , 3582– 3590 (2019). .

    Article Tachibana, Y. & Miller, A. A. A morphological category design to recognize unsettled PanSTARRS1 sources: application in the ZTF real-time pipeline. ADS Publ. Astron. Soc. Pac.
    Google Scholar
    130

  • , 128001 (2018 ).

    Article Tonry, J. L. et al. The Pan-STARRS1 photometric system. ADS Astrophys. J.
    Google Scholar
    750

  • , 99 (2012 ).

    Article Flewelling, H. A. et al. The Pan-STARRS1 database and information items. ADS Astrophys. J. Suppl. Ser.
    Google Scholar
    251

  • , 7 (2020 ).

    Article Tonry, J. L. et al. ATLAS: a high-cadence all-sky study system. ADS Publ. Astron. Soc. Pac.
    Google Scholar
    130

  • , 064505 (2018 ).

    Article Smith, K. W. et al. Style and operation of the ATLAS short-term science server. ADS Publ. Astron. Soc. Pac.
    Google Scholar
    132

  • , 085002 (2020 ).

    Article Shingles, L. et al. Release of the ATLAS Forced Photometry server for public usage. Short-term Name Server AstroNote 2021-7 (2021 ).ADS Steele, I. A. et al. The Liverpool Telescope: efficiency and very first outcomes.
    Google Scholar
    Proc. SPIE

  • 5489, 679 (2004 ).

    Article
    ADS Dhillon, V. S. et al. ULTRASPEC: a high-speed imaging photometer on the 2.4-m Thai National Telescope.
    Google Scholar
    Mon. Not. R. Astron. Soc.

  • 444,
    4009– 4021( 2014).
    (* ). .

    ArticleADS Kumar, H. et al. India’s very first robotic eye for time-domain astrophysics: the GROWTH-India telescope.
    Google Scholar
    Astron. J.

  • 164, 90 (2022 ).

    Article
    ADS Dressler, A. et al. IMACS: the Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade.
    Google Scholar
    Publ. Astron. Soc. Pac.

  • 123, 288 (2011 ).

    Article
    ADS Harding, L. K. et al. CHIMERA: a wide-field, multi-colour, high-speed photometer at the focal point of the Hale telescope.
    Google Scholar
    Mon. Not. R. Astron. Soc.

  • 457

  • ,
    3036– 3049( 2016).
    (* ). . Dhillon, V. S. et al. ULTRACAM: an ultrafast, triple-beam CCD video camera for high-speed astrophysics.

    Article Mon. Not. R. Astron. Soc. ADS 378
    Google Scholar
    ,
    825– 840( 2007).

  • (* ). . Smartt, S. J. et al. PESSTO: study description and items from the very first information release by the Public ESO Spectroscopic Survey of Transient Objects.

    Article Astron. Astrophys.ADS 579CAS, A40 (2015 ).
    Google Scholar

  • Buzzoni, B. et al. The ESO Faint Object Spectrograph and Camera (EFOSC). ESO Messenger 38

    Article, 9– 13 (1984 ).ADS

    Google Scholar

  • Blagorodnova, N. et al. The SED Machine: a robotic spectrograph for quick short-term category. Publ. Astron. Soc. Pac. 130, 035003 (2018 ).

    Article
    ADS

    Google Scholar

  • Ofek, E. O. et al. The Large Array Survey Telescope– system summary and efficiencies. Publ. Astron. Soc. Pac. 135, 065001 (2023 ).

    Article
    ADS

    Google Scholar

  • Ben-Ami, S. et al. The Large Array Survey Telescope– science objectives. Publ. Astron. Soc. Pac. 135, 085002 (2023 ).

    Article Ofek, E. O. MAAT: MATLAB Astronomy and Astrophysics Toolbox. Astrophysics Source Code Library, record ascl:1407.005 (2014 ).ADS Ofek, E. O. A code for robust astrometric option of huge images. CAS Publ. Astron. Soc. Pac.
    Google Scholar
    131

  • , 054504 (2019 ).

    Article Gaia Collaboration. Gaia Early Data Release 3. Summary of the contents and study homes.
    Google Scholar
    Astron. Astrophys.

  • 649, A1 (2021 ).

    ADS Oke, J. B. et al. The Keck low-resolution imaging spectrometer.
    Google Scholar
    Publ. Astron. Soc. Pac.

  • 107, 375 (1995 ).

    Article
    ADS Perley, D. A. Fully automatic decrease of longslit spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory.
    Google Scholar
    Publ. Astron. Soc. Pac.

  • 131, 084503 (2019 ).

    Article
    ADS Nayana, A. J. et al. 325 and 610 MHz radio equivalents of SNR G353.6-0.7 likewise called HESS J1731-347.
    Google Scholar
    Mon. Not. R. Astron. Soc.

  • 467,
    155– 163( 2017).
    .

  • Greisen, E. W. in Information Handling in Astronomy – Historical Vistas (ed. Heck, A.) 109– 125 (Springer, 2003). Perley, R. A., Chandler, C. J., Butler, B. J. & & Wrobel, J. M. The Expanded Very Large Array: a brand-new telescope for brand-new science.

    Article Astrophys. J. Lett.ADS 739
    Google Scholar
    , L1 (2011 ).



  • McMullin, J. P., Waters, B., Schiebel, D., Young, W. & & Golap, K. in

    Article Astronomical Data Analysis Software and Systems XVI ASP Conference Series Vol. 376
    Google Scholar
    127 (Astronomical Society of the Pacific, 2007).

  • Gildas Team. GILDAS: Grenoble Image and Line Data Analysis Software. Astrophysics Source Code Library, record ascl:1305.010 (2013 ). Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120

    Article, 165– 195 (2005 ).ADS

    Google Scholar

  • Roming, P. W. A. et al. The Swift ultra-violet/optical telescope. Space Sci. Rev. 120

    Article, 95– 142 (2005 ).ADS

    Google Scholar

  • Evans, P. A. et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron. Astrophys. 469

    ADS, 379– 385 (2007 ).CAS

    Google Scholar

  • Evans, P. A. et al. Techniques and outcomes of an automated analysis of a total sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc.

  • 397,
    1177– 1201( 2009).

    Article (* ).ADS Willingale, R., Starling, R. & L. C., Beardmore, A. P., Tanvir, N. R. & O’Brien, P. T. Calibration of X-ray absorption in our Galaxy.
    Google Scholar
    Mon. Not. R. Astron. Soc.

  • 431,
    394– 404( 2013).
    (* ).

  • .

  • Fruscione, A. et al. CIAO: Chandra’s information analysis system. Proc. SPIE 6270, 62701V (2006 ).

    Article
    ADS

    Google Scholar
    GROWTH India Telescope;

  • . Taggart, K. & & Perley, D. A. Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: the value of dwarf and starbursting galaxies. Mon. Not. R. Astron. Soc. 503

    Article, 3931– 3952 (2021 ).ADS

    Google Scholar


  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here