Kasemchainan, J. et al. Crucial removing existing cause dendrite development on plating in lithium anode strong electrolyte cells. Nat. Mater. 18, 1105– 1111 (2019 ).
Krauskopf, T., Mogwitz, B., Rosenbach, C., Zeier, W. G. & & Janek, J. Diffusion restriction of lithium metal and Li-Mg alloy anodes on LLZO type strong electrolytes as a function of temperature level and pressure. Adv. Energy Mater. 9, 1902568 (2019 ).
Ning, Z. et al. Envisioning plating-induced breaking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121– 1129 (2021 ).
Ning, Z. et al. Dendrite initiation and proliferation in lithium metal solid-state batteries. Nature 618, 287– 293 (2023 ).
Walther, F. et al. Visualization of the interfacial decay of composite cathodes in argyrodite-based all-solid-state batteries utilizing time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745– 3755 (2019 ).
Li, X. et al. Deciphering the chemistry and microstructure advancement of a cathodic user interface in sulfide-based all-solid-state Li-ion batteries. ACS Energy Lett. 4, 2480– 2488 (2019 ).
Inaoka, T. et al. Tin interlayer at the Li/Li3PS4 user interface for enhanced Li stripping/plating efficiency. J. Phys. Chem. C 127, 10453– 10458 (2023 ).
Raj, V. et al. Direct connection in between space development and lithium dendrite development in solid-state electrolytes with interlayers. Nat. Mater. 21, 1050– 1056 (2022 ).
Kim, S. et al. High-power hybrid solid-state lithium– metal batteries made it possible for by chosen directional lithium development system. ACS Energy Lett. 8, 9– 20 (2023 ).
Sang, L. et al. Comprehending the result of interlayers at the thiophosphate strong electrolyte/lithium user interface for all-solid-state Li batteries. Chem. Mater. 30, 8747– 8756 (2018 ).
Sakuma, M., Suzuki, K., Hirayama, M. & & Kanno, R. Reactions at the electrode/electrolyte user interface of all-solid-state lithium batteries including Li-M (M = Sn, Si) alloy electrodes and sulfide-based strong electrolytes. Solid State Ionics 285, 101– 105 (2016 ).
Han, S. Y. et al. Tension advancement throughout biking of alloy-anode solid-state batteries. Joule 5, 2450– 2465 (2021 ).
Tan, D. H. S. et al. Carbon-free high-loading silicon anodes made it possible for by sulfide strong electrolytes. Science 373, 1494– 1499 (2021 ).
Luo, S. et al. Development of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021 ).
Liu, X. et al. Electrochemo‐mechanical impacts on structural stability of Ni‐rich cathodes with various microstructures in all solid‐state batteries. Adv. Energy Mater. 11 , 2003583( 2021).
Wan, H. et al. F and N abundant strong electrolyte for steady all‐solid‐state battery. Adv. Funct. Mater. 32, 2110876 (2022 ).
Wan, H. et al. Crucial interphase overpotential as a lithium dendrite-suppression requirement for all-solid-state lithium battery style. Nat. Energy 8, 473– 481 (2023 ).
Okamoto, H. Li-Zn (lithium-zinc). J. Phase Equilibria Diffus. 33, 345– 345 (2012 ).
Pavlyuk, V., Sozanskyi, M., Dmytriv, G., Indris, S. & & Ehrenberg, H. Amendment of the Li-Bi stage diagram crystal and electronic structure of Li 2 Bi. J. Phase Equilibria Diffus. 36, 544– 553 (2015 ).
Zhang, S. et al. Stage diagram identified lithium plating/stripping habits on lithiophilic substrates. ACS Energy Lett. 6, 4118– 4126 (2021 ).
Kim, S. Y. & & Li, J. Porous blended ionic electronic conductor interlayers for solid-state batteries. Energy Mater. Adv. 2021, 1519569 (2021 ).
Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries made it possible for by silver-carbon composite anodes. Nat. Energy 5, 299– 308 (2020 ).
Jin, S. et al. Solid-solution-based metal alloy stage for extremely reversible lithium metal anode. J. Am. Chem. Soc. 142, 8818– 8826 (2020 ).
Hallstedt, B. & & Kim, O. Thermodynamic evaluation of the Al-Li system. Int. J. Mat. Res. 98, 961– 969 (2007 ).
Ye, L. & & Li, X. A vibrant stability style method for lithium metal strong state batteries. Nature 593, 218– 222 (2021 ).
Zhou, L. et al. High areal capability, long cycle life 4 V ceramic all-solid-state Li-ion batteries made it possible for by chloride strong electrolytes. Nat. Energy 7, 83– 93 (2022 ).
Hu, F. et al. Build an ultrathin bismuth buffer for steady solid-state lithium metal batteries. ACS Appl. Mater. User Interfaces 12, 12793– 12800 (2020 ).
Zhao, B. et al. Supporting Li 7 P 3 S 11/ lithium metal anode user interface by in-situ bifunctional composite layer. Chem. Eng. J. 429, 132411 (2022 ).
Fan, X. et al. Fluorinated strong electrolyte interphase allows extremely reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018 ).