Interface design for all-solid-state lithium batteries

0
8


  • Kasemchainan, J. et al. Crucial removing existing cause dendrite development on plating in lithium anode strong electrolyte cells. Nat. Mater. 18, 1105– 1111 (2019 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Krauskopf, T., Mogwitz, B., Rosenbach, C., Zeier, W. G. & & Janek, J. Diffusion restriction of lithium metal and Li-Mg alloy anodes on LLZO type strong electrolytes as a function of temperature level and pressure. Adv. Energy Mater. 9, 1902568 (2019 ).

    Article
    CAS

    Google Scholar

  • Ning, Z. et al. Envisioning plating-induced breaking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121– 1129 (2021 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Ning, Z. et al. Dendrite initiation and proliferation in lithium metal solid-state batteries. Nature 618, 287– 293 (2023 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Walther, F. et al. Visualization of the interfacial decay of composite cathodes in argyrodite-based all-solid-state batteries utilizing time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745– 3755 (2019 ).

    Article
    CAS

    Google Scholar

  • Li, X. et al. Deciphering the chemistry and microstructure advancement of a cathodic user interface in sulfide-based all-solid-state Li-ion batteries. ACS Energy Lett. 4, 2480– 2488 (2019 ).

    Article
    CAS

    Google Scholar

  • Inaoka, T. et al. Tin interlayer at the Li/Li3PS4 user interface for enhanced Li stripping/plating efficiency. J. Phys. Chem. C 127, 10453– 10458 (2023 ).

    Article
    CAS

    Google Scholar

  • Raj, V. et al. Direct connection in between space development and lithium dendrite development in solid-state electrolytes with interlayers. Nat. Mater. 21, 1050– 1056 (2022 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Kim, S. et al. High-power hybrid solid-state lithium– metal batteries made it possible for by chosen directional lithium development system. ACS Energy Lett. 8, 9– 20 (2023 ).

  • Sang, L. et al. Comprehending the result of interlayers at the thiophosphate strong electrolyte/lithium user interface for all-solid-state Li batteries. Chem. Mater. 30, 8747– 8756 (2018 ).

    Article
    ADS
    CAS

    Google Scholar

  • Sakuma, M., Suzuki, K., Hirayama, M. & & Kanno, R. Reactions at the electrode/electrolyte user interface of all-solid-state lithium batteries including Li-M (M = Sn, Si) alloy electrodes and sulfide-based strong electrolytes. Solid State Ionics 285, 101– 105 (2016 ).

    Article
    CAS

    Google Scholar

  • Han, S. Y. et al. Tension advancement throughout biking of alloy-anode solid-state batteries. Joule 5, 2450– 2465 (2021 ).

    Article
    CAS

    Google Scholar

  • Tan, D. H. S. et al. Carbon-free high-loading silicon anodes made it possible for by sulfide strong electrolytes. Science 373, 1494– 1499 (2021 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Luo, S. et al. Development of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Liu, X. et al. Electrochemo‐mechanical impacts on structural stability of Ni‐rich cathodes with various microstructures in all solid‐state batteries. Adv. Energy Mater. 11 , 2003583( 2021).

    Article
    CAS

    Google Scholar

  • Wan, H. et al. F and N abundant strong electrolyte for steady all‐solid‐state battery. Adv. Funct. Mater. 32, 2110876 (2022 ).

  • Wan, H. et al. Crucial interphase overpotential as a lithium dendrite-suppression requirement for all-solid-state lithium battery style. Nat. Energy 8, 473– 481 (2023 ).

    Article
    ADS
    CAS

    Google Scholar

  • Okamoto, H. Li-Zn (lithium-zinc). J. Phase Equilibria Diffus. 33, 345– 345 (2012 ).

    Article
    CAS

    Google Scholar

  • Pavlyuk, V., Sozanskyi, M., Dmytriv, G., Indris, S. & & Ehrenberg, H. Amendment of the Li-Bi stage diagram crystal and electronic structure of Li 2 Bi. J. Phase Equilibria Diffus. 36, 544– 553 (2015 ).

    Article
    CAS

    Google Scholar

  • Zhang, S. et al. Stage diagram identified lithium plating/stripping habits on lithiophilic substrates. ACS Energy Lett. 6, 4118– 4126 (2021 ).

    Article
    CAS

    Google Scholar

  • Kim, S. Y. & & Li, J. Porous blended ionic electronic conductor interlayers for solid-state batteries. Energy Mater. Adv. 2021, 1519569 (2021 ).

    Article
    ADS

    Google Scholar

  • Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries made it possible for by silver-carbon composite anodes. Nat. Energy 5, 299– 308 (2020 ).

    Article
    ADS
    CAS

    Google Scholar

  • Jin, S. et al. Solid-solution-based metal alloy stage for extremely reversible lithium metal anode. J. Am. Chem. Soc. 142, 8818– 8826 (2020 ).

    Article
    PubMed

    Google Scholar

  • Hallstedt, B. & & Kim, O. Thermodynamic evaluation of the Al-Li system. Int. J. Mat. Res. 98, 961– 969 (2007 ).

    Article
    CAS

    Google Scholar

  • Ye, L. & & Li, X. A vibrant stability style method for lithium metal strong state batteries. Nature 593, 218– 222 (2021 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Zhou, L. et al. High areal capability, long cycle life 4 V ceramic all-solid-state Li-ion batteries made it possible for by chloride strong electrolytes. Nat. Energy 7, 83– 93 (2022 ).

    Article
    ADS
    CAS

    Google Scholar

  • Hu, F. et al. Build an ultrathin bismuth buffer for steady solid-state lithium metal batteries. ACS Appl. Mater. User Interfaces 12, 12793– 12800 (2020 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Zhao, B. et al. Supporting Li 7 P 3 S 11/ lithium metal anode user interface by in-situ bifunctional composite layer. Chem. Eng. J. 429, 132411 (2022 ).

    Article
    CAS

    Google Scholar

  • Fan, X. et al. Fluorinated strong electrolyte interphase allows extremely reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here