GPCR activation and GRK2 assembly by a biased intracellular agonist

0
23


  • Bottle, J. A., Freedman, N. J. & & Lefkowitz, R. J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653– 692 (1998 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Gurevich, E. V., Tesmer, J. J., Mushegian, A. & & Gurevich, V. V. G protein-coupled receptor kinases: greater than simply kinases as well as not just for GPCRs. Pharmacol. Ther. 133, 40– 69 (2012 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Gurevich, V. V. & & Gurevich, E. V. GPCR signaling guideline: the function of GRKs as well as arrestins. Front. Pharmacol. 10, 125 (2019 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hodavance, S. Y., Gareri, C., Torok, R. D. & & Rockman, H. A. G protein-coupled receptor prejudiced agonism. J. Cardiovasc. Pharmacol. 67, 193– 202 (2016 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Rankovic, Z., Brust, T. F. & & Bohn, L. M. Prejudiced agonism: an arising standard in GPCR medicine exploration. Bioorg. Medication. Chem. Lett. 26, 241– 250 (2016 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Seyedabadi, M., Gharghabi, M., Gurevich, E. V. & & Gurevich, V. V. Structural basis of GPCR combining to distinctive signal transducers: effects for prejudiced signaling. Trends Biochem. Sci. 47, 570– 581 (2022 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Slosky, L. M. et al. β-Arrestin-biased allosteric modulator of NTSR1 uniquely undermines addicting actions. Cell 181, 1364– 1379. e1314 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Benovic, J. L., DeBlasi, A., Rock, W. C., Caron, M. G. & & Lefkowitz, R. J. β-Adrenergic receptor kinase: main framework defines a multigene household. Scientific Research 246, 235– 240 (1989 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Mushegian, A., Gurevich, V. V. & & Gurevich, E. V. The beginning as well as development of G protein-coupled receptor kinases. PLoS ONE 7, e33806 (2012 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Sulon, S. M. & & Benovic, J. L. Targeting G protein-coupled receptor kinases (GRKs) to G protein-coupled receptors. Curr. Opin. Endocr. Metab. Res. 16, 56– 65 (2021 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Ribas, C. et al. The G protein-coupled receptor kinase (GRK) interactome: function of GRKs in GPCR guideline as well as signaling. Biochim. Biophys. Acta 1768, 913– 922 (2007 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Komolov, K. E. et al. Framework of a GRK5– calmodulin complicated exposes molecular system of GRK activation as well as substratum targeting. Mol. Cell 81, 323– 339 e311 (2021 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Chen, Q. et al. Frameworks of rhodopsin in complicated with G-protein-coupled receptor kinase 1. Nature 595, 600– 605 (2021 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Beautrait, A. et al. Mapping the suppositious G protein-coupled receptor (GPCR) docking website on GPCR kinase 2: understandings from undamaged cell phosphorylation as well as employment assays. J. Biol. Chem. 289, 25262– 25275 (2014 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Baameur, F. et al. Duty for the regulatory authority of G-protein signaling homology domain name of G protein-coupled receptor kinases 5 as well as 6 in beta 2-adrenergic receptor as well as rhodopsin phosphorylation. Mol. Pharmacol. 77, 405– 415 (2010 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Komolov, K. E. et al. Architectural as well as useful evaluation of a β 2– adrenergic receptor complicated with GRK5. Cell 169, 407– 421. e416 (2017 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lodowski, D. T., Bottle, J. A., Capel, W. D., Lefkowitz, R. J. & & Tesmer, J. J. Maintaining G healthy proteins away: a complicated in between G protein-coupled receptor kinase 2 as well as Gβγ. Scientific Research 300, 1256– 1262 (2003 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Tesmer, V. M., Kawano, T., Shankaranarayanan, A., Kozasa, T. & & Tesmer, J. J. Picture of turned on G healthy proteins at the membrane layer: the Gα q— GRK2– Gβγ complicated. Scientific Research 310, 1686– 1690 (2005 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • He, Y. et al. Molecular setting up of rhodopsin with G protein-coupled receptor kinases. Cell Res. 27, 728– 747 (2017 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Rasmussen, S. G. et al. Crystal framework of the β 2 adrenergic receptor– G s healthy protein complicated. Nature 477, 549– 555 (2011 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Kang, Y. et al. Crystal framework of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561– 567 (2015 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zhou, X. E. et al. Recognition of phosphorylation codes for arrestin employment by G protein-coupled receptors. Cell 170, 457– 469. e413 (2017 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Yin, W. et al. An intricate framework of arrestin-2 bound to a G protein-coupled receptor. Cell Res. 29, 971– 983 (2019 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Huang, W. et al. Framework of the neurotensin receptor 1 in complicated with β-arrestin 1. Nature 579, 303– 308 (2020 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Staus, D. P. et al. Framework of the M2 muscarinic receptor– β-arrestin complicated in a lipid nanodisc. Nature 579, 297– 302 (2020 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lee, Y. et al. Molecular basis of β-arrestin combining to formoterol-bound β 1– adrenoceptor. Nature 583, 862– 866 (2020 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Besserer-Offroy, E. et al. The signaling trademark of the neurotensin kind 1 receptor with endogenous ligands. Eur. J. Pharmacol. 805, 1– 13 (2017 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Rostene, W. H. & & Alexander, M. J. Neurotensin as well as neuroendocrine guideline. Front. Neuroendocrinol. 18, 115– 173 (1997 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Inagaki, S. et al. G protein-coupled receptor kinase 2 (GRK2) as well as 5 (GRK5) display discerning phosphorylation of the neurotensin receptor artificial insemination. Biochemistry And Biology 54, 4320– 4329 (2015 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Kato, H. E. et al. Conformational changes of a neurotensin receptor 1– G i 1 complicated. Nature 572, 80– 85 (2019 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Barnea, G. et al. The hereditary layout of signaling waterfalls to document receptor activation. Proc. Natl Acad. Sci. United States 105, 64– 69 (2008 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Dixon, A. S. et al. NanoLuc complementation press reporter maximized for exact dimension of healthy protein communications in cells. ACS Chem. Biol. 11, 400– 408 (2016 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Duan, J. et al. Cryo-EM framework of a turned on VIP1 receptor– G healthy protein complicated exposed by a NanoBiT tethering technique. Nat. Commun. 11, 4121 (2020 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Cato, M. C. et al. The open inquiry of exactly how GPCRs engage with GPCR kinases (GRKs). Biomolecules 11, 447 (2021 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Homan, K. T. & & Tesmer, J. J. Molecular basis for tiny particle restraint of G protein-coupled receptor kinases. ACS Chem. Biol. 10, 246– 256 (2015 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Pellegrini, E., Signor, L., Singh, S., Boeri Erba, E. & & Cusack, S. Frameworks of the non-active as well as energetic states of RIP2 kinase notify on the system of activation. PLoS ONE 12, e0177161 (2017 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Underbrush, K. W. et al. Catalytically energetic MAP KAP kinase 2 frameworks in complicated with staurosporine as well as ADP disclose distinctions with the autoinhibited enzyme. Framework 11, 627– 636 (2003 ).

    Article
    CAS
    PubMed

    Google Scholar

  • White, J. F. et al. Framework of the agonist-bound neurotensin receptor. Nature 490, 508– 513 (2012 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Komolov, K. E., Bhardwaj, A. & & Benovic, J. L. Atomic framework of GRK5 exposes distinctive architectural attributes unique for G protein-coupled receptor kinases. J. Biol. Chem. 290, 20629– 20647 (2015 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Bottle, J. A. et al. Duty of βγ subunits of G healthy proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors. Scientific Research 257, 1264– 1267 (1992 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Smrcka, A. V. G healthy protein βγ subunits: main arbitrators of G protein-coupled receptor signaling. Cell. Mol. Life Sci. 65, 2191– 2214 (2008 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Draper-Joyce, C. J. et al. Favorable allosteric systems of adenosine A1 receptor-mediated analgesia. Nature 597, 571– 576 (2021 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Egyed, A., Kiss, D. J. & & Keseru, G. M. The effect of the second binding pocket on the pharmacology of course A GPCRs. Front. Pharmacol. 13, 847788 (2022 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Duan, J. et al. Framework of a G protein-coupled receptor with GRK2 as well as a prejudiced ligand. Preprint at bioRxiv https://doi.org/10.1101/2022.10.19.512855 (2022 ).

  • Krumm, B. E. et al. Neurotensin receptor allosterism exposed in complicated with a prejudiced allosteric modulator. Biochemistry And Biology 62, 1233– 1248 (2023 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Bouley, R. A. et al. A brand-new paroxetine-based GRK2 prevention lowers internalization of the μ-opioid receptor. Mol. Pharmacol. 97, 392– 401 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zheng, S. Q. et al. MotionCor2: anisotropic adjustment of beam-induced movement for enhanced cryo-electron microscopy. Nat. Techniques 14, 331– 332 (2017 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & & Brubaker, M. A. cryoSPARC: formulas for quick without supervision cryo-EM framework decision. Nat. Techniques 14, 290– 296 (2017 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Punjani, A. & & Fleet, D. J. 3D irregularity evaluation: solving constant adaptability as well as distinct diversification from solitary bit cryo-EM. J. Struct. Biol. 213, 107702 (2021 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Pettersen, E. F. et al. UCSF Chimera– a visualization system for exploratory study as well as evaluation. J. Comput. Chem. 25, 1605– 1612 (2004 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Emsley, P. & & Cowtan, K. Coot: model-building devices for molecular graphics. Acta Crystallogr. D 60, 2126– 2132 (2004 ).

    Article
    PubMed

    Google Scholar

  • Croll, T. I. ISOLDE: a literally practical atmosphere for design structure right into low-resolution electron-density maps. Acta Crystallogr. D 74, 519– 530 (2018 ).

    Article
    CAS

    Google Scholar

  • Adams, P. D. et al. PHENIX: a thorough Python-based system for macromolecular framework service. Acta Crystallogr. D 66, 213– 221 (2010 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Pettersen, E. F. et al. UCSF ChimeraX: framework visualization for scientists, instructors, as well as programmers. Healthy Protein Sci. 30, 70– 82 (2020 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here