Meza, L. R., Das, S. & & Greer, J. R. Strong, light-weight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322– 1326 (2014 ).
Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373– 1377 (2014 ).
Tancogne-Dejean, T., Diamantopoulou, M., Gorji, M. B., Bonatti, C. & & Mohr, D. 3D plate-lattices: an emerging class of low-density metamaterial displaying optimum isotropic tightness. Adv. Mater. 30, 1803334 (2018 ).
Berger, J. B., Wadley, H. N. & & McMeeking, R. M. Mechanical metamaterials at the theoretical limitation of isotropic flexible tightness. Nature 543, 533– 537 (2017 ).
Krödel, S. & & Daraio, C. Microlattice metamaterials for customizing ultrasonic transmission with elastoacoustic hybridization. Phys. Rev. Appl. 6, 064005 (2016 ).
Frenzel, T., Köpfler, J., Jung, E., Kadic, M. & & Wegener, M. Ultrasound experiments on acoustical activity in chiral mechanical metamaterials. Nat. Commun. 10, 3384 (2019 ).
Bayat, A. & & Gaitanaros, S. Wave directionality in three-dimensional regular lattices. J. Appl. Mech. 85, 011004 (2017 ).
Portela, C. M. et al. Supersonic effect strength of nanoarchitected carbon. Nat. Mater. 20, 1491– 1497 (2021 ).
Lai, C. Q. & & Daraio, C. Highly permeable microlattices as effective and ultrathin effect absorbers. Int. J. Impact Eng. 120, 138– 149 (2018 ).
Dattelbaum, D. M., Ionita, A., Patterson, B. M., Branch, B. A. & & Kuettner, L. Shockwave dissipation by interface-dominated permeable structures. AIP Adv. 10, 075016 (2020 ).
Mueller, J., Matlack, K. H., Shea, K. & & Daraio, C. Energy absorption homes of stochastic and regular 3D lattice products. Adv. Theory Simul. 2, 1900081 (2019 ).
Weeks, J. S. & & Ravichandran, G. High strain-rate compression habits of polymeric rod and plate Kelvin lattice structures. Mech. Mater. 166, 104216 (2022 ).
Guo, Y. et al. Very little surface-based products for topological flexible wave directing. Adv. Funct. Mater. 32, 2204122 (2022 ).
Matlack, K. H., Bauhofer, A., Krödel, S., Palermo, A. & & Daraio, C. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc. Natl Acad. Sci. 113, 8386– 8390 (2016 ).
Hussein, M. I. & & Frazier, M. J. Metadamping: an emerging phenomenon in dissipative metamaterials. J. Sound Vib. 332, 4767– 4774 (2013 ).
Hawreliak, J. A. et al. Dynamic habits of crafted lattice products. Sci. Rep. 6, 28094 (2016 ).
Lind, J., Robinson, A. K. & & Kumar, M. Insight into the collaborated jetting habits in regular lattice structures under vibrant compression. J. Appl. Phys. 128, 015901 (2020 ).
Crook, C. et al. Plate-nanolattices at the theoretical limitation of tightness and strength. Nat. Commun. 11, 1579 (2020 ).
Bauer, J., Schroer, A., Schwaiger, R. & & Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438– 443 (2016 ).
Meza, L. R. et al. Resistant 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. U.S.A. 112, 11502– 11507 (2015 ).
Portela, C. M. et al. Severe mechanical strength of self-assembled nanolabyrinthine products. Proc. Natl Acad. Sci. 117, 5686– 5693 (2020 ).
Guell Izard, A., Bauer, J., Crook, C., Turlo, V. & & Valdevit, L. Ultrahigh energy absorption multifunctional spinodal nanoarchitectures. Small 15, 1903834 (2019 ).
Babaee, S. et al. 3D soft metamaterials with unfavorable Poisson’s ratio. Adv. Mater. 25, 5044– 5049 (2013 ).
Farzaneh, A., Pawar, N., Portela, C. M. & & Hopkins, J. B. Sequential metamaterials with rotating Poisson’s ratios. Nat. Commun. 13, 1041 (2022 ).
Jin, L. et al. Directed shift waves in multistable mechanical metamaterials. Proc. Natl Acad. Sci. U.S.A. 117, 2319– 2325 (2020 ).
Baravelli, E. & & Ruzzene, M. Internally resonating lattices for bandgap generation and low-frequency vibration control. J. Sound Vib. 332, 6562– 6579 (2013 ).
Iglesias Martínez, J. A. et al. Speculative observation of roton-like dispersion relations in metamaterials. Sci. Adv. 7, eabm2189 (2021 ).
Meza, L. R. et al. Reconsidering the mechanical home area of three-dimensional lattice architectures. Acta Mater. 140, 424– 432 (2017 ).
Lind, J., Jensen, B. J., Barham, M. & & Kumar, M. In situ vibrant compression wave habits in additively produced lattice products. J. Mater. Res. 34, 2– 19 (2019 ).
Deshpande, V. S., Fleck, N. A. & & Ashby, M. F. Effective homes of the octet-truss lattice product. J. Mech. Phys. Solids 49, 1747– 1769 (2001 ).
Bastek, J.-H., Kumar, S., Telgen, B., Glaesener, R. N. & & Kochmann, D. M. Inverting the structure– home map of truss metamaterials by deep knowing. Proc. Natl Acad. Sci. 119, e2111505119 (2022 ).
Weeks, J. S., Gandhi, V. & & Ravichandran, G. Shock compression habits of stainless-steel 316L octet-truss lattice structures. Int. J. Impact Eng. 169, 104324 (2022 ).
Tancogne-Dejean, T., Spierings, A. B. & & Mohr, D. Additively-manufactured metal micro-lattice products for high particular energy absorption under vibrant and fixed loading. Acta Mater. 116, 14– 28 (2016 ).
Gongora, A. E. et al. Creating lattices for effect security utilizing transfer knowing. Matter 5, 2829– 2846 (2022 ).
Mao, Y., He, Q. & & Zhao, X. Designing complicated architectured products with generative adversarial networks. Sci. Adv. 6, eaaz4169 (2020 ).
Abi Ghanem, M. et al. Longitudinal eigenvibration of multilayer colloidal crystals and the result of nanoscale contact bridges. Nanoscale 11, 5655– 5665 (2019 ).
Akimov, A., Young, E., Sharp, J., Gusev, V. & & Kent, A. Coherent hypersonic closed-pipe organ like modes in supported polymer movies. Appl. Phys. Lett. 99, 021912 (2011 ).
Dryburgh, P. et al. Measurement of the single crystal flexibility matrix of polycrystalline products. Acta Mater. 225, 117551 (2022 ).
Rohbeck, N. et al. Impact of high stress rates and temperature level on the micromechanical homes of 3D-printed polymer structures made by two-photon lithography. Mater. Des. 195, 108977 (2020 ).
Salari-Sharif, L. et al. Damping of selectively bonded 3D woven lattice products. Sci. Rep. 8, 14572 (2018 ).
Pouet, B. F. & & Rasolofosaon, N. J. P. Measurement of broadband intrinsic ultrasonic attenuation and dispersion in solids with laser strategies. J. Acoust. Soc. Am. 93, 1286– 1292 (1993 ).
Garrett, S. L. Understanding Acoustics: An Experimentalist’s View of Sound and Vibration (Springer, 2020).
Szabo, T. L. Time domain wave formulas for lossy media following a frequency power law. J. Acoust. Soc. Am. 96, 491– 500 (1994 ).
Szabo, T. L. & & Wu, J. A design for longitudinal and shear wave proliferation in viscoelastic media. J. Acoust. Soc. Am. 107, 2437– 2446 (2000 ).
Patil, G. U. & & Matlack, K. H. Effective home examination and analysis of three-dimensional regular lattices and composites through Bloch-wave homogenization. J. Acoust. Soc. Am. 145, 1259– 1269 (2019 ).
Graff, K. F. Wave Motion in Elastic Solids (Dover Publications, 2012).
Gross, A., Pantidis, P., Bertoldi, K. & & Gerasimidis, S. Correlation in between geography and flexible homes of imperfect truss-lattice products. J. Mech. Phys. Solids 124, 577– 598 (2019 ).
Liu, L., Kamm, P., García-Moreno, F., Banhart, J. & & Pasini, D. Elastic and failure reaction of imperfect three-dimensional metal lattices: the function of geometric flaws caused by Selective Laser Melting. J. Mech. Phys. Solids 107, 160– 184 (2017 ).
Glaesener, R. et al. Forecasting the impact of geometric flaws on the mechanical reaction of 2D and 3D regular trusses. Acta Mater. 254, 118918 (2023 ).
Wang, C. et al. Bioadhesive ultrasound for long-lasting constant imaging of varied organs. Science 377, 517– 523 (2022 ).