Dynamic diagnosis of metamaterials through laser-induced vibrational signatures

0
5


  • Meza, L. R., Das, S. & & Greer, J. R. Strong, light-weight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322– 1326 (2014 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373– 1377 (2014 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Tancogne-Dejean, T., Diamantopoulou, M., Gorji, M. B., Bonatti, C. & & Mohr, D. 3D plate-lattices: an emerging class of low-density metamaterial displaying optimum isotropic tightness. Adv. Mater. 30, 1803334 (2018 ).

    Article

    Google Scholar

  • Berger, J. B., Wadley, H. N. & & McMeeking, R. M. Mechanical metamaterials at the theoretical limitation of isotropic flexible tightness. Nature 543, 533– 537 (2017 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Krödel, S. & & Daraio, C. Microlattice metamaterials for customizing ultrasonic transmission with elastoacoustic hybridization. Phys. Rev. Appl. 6, 064005 (2016 ).

    Article
    ADS

    Google Scholar

  • Frenzel, T., Köpfler, J., Jung, E., Kadic, M. & & Wegener, M. Ultrasound experiments on acoustical activity in chiral mechanical metamaterials. Nat. Commun. 10, 3384 (2019 ).

    Article
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Bayat, A. & & Gaitanaros, S. Wave directionality in three-dimensional regular lattices. J. Appl. Mech. 85, 011004 (2017 ).

    Article
    ADS

    Google Scholar

  • Portela, C. M. et al. Supersonic effect strength of nanoarchitected carbon. Nat. Mater. 20, 1491– 1497 (2021 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Lai, C. Q. & & Daraio, C. Highly permeable microlattices as effective and ultrathin effect absorbers. Int. J. Impact Eng. 120, 138– 149 (2018 ).

    Article

    Google Scholar

  • Dattelbaum, D. M., Ionita, A., Patterson, B. M., Branch, B. A. & & Kuettner, L. Shockwave dissipation by interface-dominated permeable structures. AIP Adv. 10, 075016 (2020 ).

    Article
    CAS
    ADS

    Google Scholar

  • Mueller, J., Matlack, K. H., Shea, K. & & Daraio, C. Energy absorption homes of stochastic and regular 3D lattice products. Adv. Theory Simul. 2, 1900081 (2019 ).

    Article

    Google Scholar

  • Weeks, J. S. & & Ravichandran, G. High strain-rate compression habits of polymeric rod and plate Kelvin lattice structures. Mech. Mater. 166, 104216 (2022 ).

    Article

    Google Scholar

  • Guo, Y. et al. Very little surface-based products for topological flexible wave directing. Adv. Funct. Mater. 32, 2204122 (2022 ).

    Article
    CAS

    Google Scholar

  • Matlack, K. H., Bauhofer, A., Krödel, S., Palermo, A. & & Daraio, C. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc. Natl Acad. Sci. 113, 8386– 8390 (2016 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Hussein, M. I. & & Frazier, M. J. Metadamping: an emerging phenomenon in dissipative metamaterials. J. Sound Vib. 332, 4767– 4774 (2013 ).

    Article
    ADS

    Google Scholar

  • Hawreliak, J. A. et al. Dynamic habits of crafted lattice products. Sci. Rep. 6, 28094 (2016 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Lind, J., Robinson, A. K. & & Kumar, M. Insight into the collaborated jetting habits in regular lattice structures under vibrant compression. J. Appl. Phys. 128, 015901 (2020 ).

    Article
    CAS
    ADS

    Google Scholar

  • Crook, C. et al. Plate-nanolattices at the theoretical limitation of tightness and strength. Nat. Commun. 11, 1579 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Bauer, J., Schroer, A., Schwaiger, R. & & Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438– 443 (2016 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Meza, L. R. et al. Resistant 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. U.S.A. 112, 11502– 11507 (2015 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Portela, C. M. et al. Severe mechanical strength of self-assembled nanolabyrinthine products. Proc. Natl Acad. Sci. 117, 5686– 5693 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Guell Izard, A., Bauer, J., Crook, C., Turlo, V. & & Valdevit, L. Ultrahigh energy absorption multifunctional spinodal nanoarchitectures. Small 15, 1903834 (2019 ).

    Article
    CAS

    Google Scholar

  • Babaee, S. et al. 3D soft metamaterials with unfavorable Poisson’s ratio. Adv. Mater. 25, 5044– 5049 (2013 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Farzaneh, A., Pawar, N., Portela, C. M. & & Hopkins, J. B. Sequential metamaterials with rotating Poisson’s ratios. Nat. Commun. 13, 1041 (2022 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Jin, L. et al. Directed shift waves in multistable mechanical metamaterials. Proc. Natl Acad. Sci. U.S.A. 117, 2319– 2325 (2020 ).

    Article
    MathSciNet
    CAS
    PubMed
    PubMed Central
    MATH
    ADS

    Google Scholar

  • Baravelli, E. & & Ruzzene, M. Internally resonating lattices for bandgap generation and low-frequency vibration control. J. Sound Vib. 332, 6562– 6579 (2013 ).

    Article
    ADS

    Google Scholar

  • Iglesias Martínez, J. A. et al. Speculative observation of roton-like dispersion relations in metamaterials. Sci. Adv. 7, eabm2189 (2021 ).

    Article
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Meza, L. R. et al. Reconsidering the mechanical home area of three-dimensional lattice architectures. Acta Mater. 140, 424– 432 (2017 ).

    Article
    CAS
    ADS

    Google Scholar

  • Lind, J., Jensen, B. J., Barham, M. & & Kumar, M. In situ vibrant compression wave habits in additively produced lattice products. J. Mater. Res. 34, 2– 19 (2019 ).

    Article
    CAS
    ADS

    Google Scholar

  • Deshpande, V. S., Fleck, N. A. & & Ashby, M. F. Effective homes of the octet-truss lattice product. J. Mech. Phys. Solids 49, 1747– 1769 (2001 ).

    Article
    CAS
    MATH
    ADS

    Google Scholar

  • Bastek, J.-H., Kumar, S., Telgen, B., Glaesener, R. N. & & Kochmann, D. M. Inverting the structure– home map of truss metamaterials by deep knowing. Proc. Natl Acad. Sci. 119, e2111505119 (2022 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Weeks, J. S., Gandhi, V. & & Ravichandran, G. Shock compression habits of stainless-steel 316L octet-truss lattice structures. Int. J. Impact Eng. 169, 104324 (2022 ).

    Article

    Google Scholar

  • Tancogne-Dejean, T., Spierings, A. B. & & Mohr, D. Additively-manufactured metal micro-lattice products for high particular energy absorption under vibrant and fixed loading. Acta Mater. 116, 14– 28 (2016 ).

    Article
    CAS
    ADS

    Google Scholar

  • Gongora, A. E. et al. Creating lattices for effect security utilizing transfer knowing. Matter 5, 2829– 2846 (2022 ).

    Article

    Google Scholar

  • Mao, Y., He, Q. & & Zhao, X. Designing complicated architectured products with generative adversarial networks. Sci. Adv. 6, eaaz4169 (2020 ).

    Article
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Abi Ghanem, M. et al. Longitudinal eigenvibration of multilayer colloidal crystals and the result of nanoscale contact bridges. Nanoscale 11, 5655– 5665 (2019 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Akimov, A., Young, E., Sharp, J., Gusev, V. & & Kent, A. Coherent hypersonic closed-pipe organ like modes in supported polymer movies. Appl. Phys. Lett. 99, 021912 (2011 ).

    Article
    ADS

    Google Scholar

  • Dryburgh, P. et al. Measurement of the single crystal flexibility matrix of polycrystalline products. Acta Mater. 225, 117551 (2022 ).

    Article
    CAS

    Google Scholar

  • Rohbeck, N. et al. Impact of high stress rates and temperature level on the micromechanical homes of 3D-printed polymer structures made by two-photon lithography. Mater. Des. 195, 108977 (2020 ).

    Article
    CAS

    Google Scholar

  • Salari-Sharif, L. et al. Damping of selectively bonded 3D woven lattice products. Sci. Rep. 8, 14572 (2018 ).

    Article
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Pouet, B. F. & & Rasolofosaon, N. J. P. Measurement of broadband intrinsic ultrasonic attenuation and dispersion in solids with laser strategies. J. Acoust. Soc. Am. 93, 1286– 1292 (1993 ).

    Article
    ADS

    Google Scholar

  • Garrett, S. L. Understanding Acoustics: An Experimentalist’s View of Sound and Vibration (Springer, 2020).

  • Szabo, T. L. Time domain wave formulas for lossy media following a frequency power law. J. Acoust. Soc. Am. 96, 491– 500 (1994 ).

    Article
    ADS

    Google Scholar

  • Szabo, T. L. & & Wu, J. A design for longitudinal and shear wave proliferation in viscoelastic media. J. Acoust. Soc. Am. 107, 2437– 2446 (2000 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Patil, G. U. & & Matlack, K. H. Effective home examination and analysis of three-dimensional regular lattices and composites through Bloch-wave homogenization. J. Acoust. Soc. Am. 145, 1259– 1269 (2019 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Graff, K. F. Wave Motion in Elastic Solids (Dover Publications, 2012).

  • Gross, A., Pantidis, P., Bertoldi, K. & & Gerasimidis, S. Correlation in between geography and flexible homes of imperfect truss-lattice products. J. Mech. Phys. Solids 124, 577– 598 (2019 ).

    Article
    ADS

    Google Scholar

  • Liu, L., Kamm, P., García-Moreno, F., Banhart, J. & & Pasini, D. Elastic and failure reaction of imperfect three-dimensional metal lattices: the function of geometric flaws caused by Selective Laser Melting. J. Mech. Phys. Solids 107, 160– 184 (2017 ).

    Article
    MathSciNet
    ADS

    Google Scholar

  • Glaesener, R. et al. Forecasting the impact of geometric flaws on the mechanical reaction of 2D and 3D regular trusses. Acta Mater. 254, 118918 (2023 ).

    Article
    CAS

    Google Scholar

  • Wang, C. et al. Bioadhesive ultrasound for long-lasting constant imaging of varied organs. Science 377, 517– 523 (2022 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here