Disproportionate declines of formerly abundant species underlie insect loss

0
7


  • Hallmann, C. A. et al. More than 75 percent decrease over 27 years in overall flying insect biomass in safeguarded locations. PLoS One 12, e0185809 (2017 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Van Klink, R. et al. Meta-analysis exposes decreases in terrestrial however increases in freshwater bug abundances. Science 368, 417– 420 (2020 ).

    Article
    ADS
    PubMed

    Google Scholar

  • Forister, M. L. et al. Increasing neonicotinoid usage and the decreasing butterfly animals of lowland California. Biol. Lett. 12, 20160475 (2016 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401– 406 (2014 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Seibold, S. et al. Arthropod decrease in forests and meadows is connected with landscape-level motorists. Nature 574, 671– 674 (2019 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Pilotto, F. et al. Meta-analysis of multidecadal biodiversity patterns in Europe. Nat. Commun. 11, 3486 (2020 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Crossley, M. S. et al. No web bug abundance and variety decreases throughout United States Long Term Ecological Research websites. Nat. Ecol. Evol. 4, 1368– 1376 (2020 ).

    Article
    PubMed

    Google Scholar

  • Xu, W.-B. et al. Regional tenancy increases for prevalent types however reduces for directly dispersed types in metacommunity time series. Nat. Commun. 14, 1463 (2023 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Newbold, T. et al. Narrow-ranged losers and prevalent winners: land usage homogenizes biodiversity in regional assemblages worldwide. PLoS Biol. 16, e2006841 (2018 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Gaston, K. J. Common ecology. BioScience 61, 354– 362 (2011 ).

    Article

    Google Scholar

  • Wagner, D. L. Insect decreases in the Anthropocene. Annu. Rev. Entomol. 65, 457– 480 (2020 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Saunders, M. E., Janes, J. K. & & O’Hanlon, J. C. Moving on from the insect armageddon story: engaging with evidence-based insect preservation. BioScience 70, 80– 89 (2020 ).

    Article

    Google Scholar

  • Schowalter, T. D., Noriega, J. A. & & Tscharntke, T. Insect results on environment services– intro. Basic Appl. Ecol. 26, 1– 7 (2018 ).

    Article

    Google Scholar

  • Kucherov, N. B., Minor, E. S., Johnson, P. P., Taron, D. & & Matteson, K. C. Butterfly decreases in secured locations of Illinois: examining the impact of twenty years of environment and landscape modification. PLoS One 16, e0257889 (2021 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Blowes, S. A. et al. Regional biodiversity modification shows interactions amongst altering richness, abundance, and consistency. Ecology 103, e3820 (2022 ).

    Article
    PubMed

    Google Scholar

  • Hallmann, C. A., Ssymank, A., Sorg, M., de Kroon, H. & & Jongejans, E. Insect biomass decrease scaled to types variety: basic patterns stemmed from a hoverfly neighborhood. Proc. Natl Acad. Sci. U.S.A. 118, e2002554117 (2021 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Preston, F. W. The commonness, and rarity, of types. Ecology 29, 254– 283 (1948 ).

    Article

    Google Scholar

  • Van Klink, R. et al. InsectChange: an international database of temporal modifications in bug and arachnid assemblages. Ecology 102, e03354 (2021 ).

    Article
    PubMed

    Google Scholar

  • Schuch, S., van Klink, R. & & Wesche, K. Is less merely less? A contrast of abundance and biomass losses in auchenorrhynchan meadow neighborhoods and their various effect on quality structure and taxonomical variety. Ecol. Indic. 146, 109743 (2023 ).

    Article

    Google Scholar

  • Haase, P. et al. The healing of European freshwater biodiversity has actually come to a stop. Nature 620, 582– 588 (2023 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Rumschlag, S. L. et al. Density decreases, richness boosts, and structure shifts in stream macroinvertebrates. Sci. Adv. 9, eadf4896 (2023 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Van Klink, R. et al. An international database of long-lasting modifications in insect assemblages. Knowledge Network for Biocomplexity https://doi.org/10.5063/F1ZC817H (2020 ).

  • Muff, S., Nilsen, E. B., O’Hara, R. B. & & Nater, C. R. Rewriting results areas in the language of proof. Trends Ecol. Evol. 37, 203– 210 (2022 ).

    Article
    PubMed

    Google Scholar

  • Dornelas, M. et al. Assemblage time series expose biodiversity modification however not organized loss. Science 344, 296– 299 (2014 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Gotelli, N. J. & & Colwell, R. K. Quantifying biodiversity: treatments and risks in the measurement and contrast of types richness. Ecol. Lett. 4, 379– 391 (2001 ).

    Article

    Google Scholar

  • Roswell, M., Dushoff, J. & & Winfree, R. A conceptual guide to determining types variety. Oikos 130, 321– 338 (2021 ).

    Article
    ADS

    Google Scholar

  • Chao, A. et al. Rarefaction and projection with Hill numbers: a structure for tasting and evaluation in types variety research studies. Ecol. Monogr. 84, 45– 67 (2014 ).

    Article

    Google Scholar

  • Jost, L. Entropy and variety. Oikos 113, 363– 375 (2006 ).

    Article
    ADS

    Google Scholar

  • Smith, B. & & Wilson, J. B. A customer’s guide to consistency indices. Oikos 76, 70 (1996 ).

    Article
    ADS

    Google Scholar

  • Galton, F. Regression towards mediocrity in genetic stature. J. Anthropol. Inst. G. B. Irel. 15, 246– 263 (1886 ).


    Google Scholar

  • Van Klink, R. & & Bowler, D. E. Code for: ‘Disproportionate decreases of previously plentiful types underlie insect loss’. Zenodo https://doi.org/10.5281/zenodo.10115304 (2023 ).

  • Brower, L. P. et al. Decrease of emperor butterflies overwintering in Mexico: is the migratory phenomenon at threat? Insect Conserv. Scuba divers. 5, 95– 100 (2012 ).

    Article

    Google Scholar

  • Van Dyck, H., Van Strien, A. J., Maes, D. & & Van Swaay, C. A. M. Declines in typical, prevalent butterflies in a landscape under extreme human usage. Conserv. Biol. 23, 957– 965 (2009 ).

    Article
    PubMed

    Google Scholar

  • Karban, R. & & Huntzinger, M. Decline of meadow spittlebugs, a formerly plentiful bug, along the California coast. Ecology 99, 2614– 2616 (2018 ).

    Article
    PubMed

    Google Scholar

  • Lockwood, J. A. & & Debrey, L. D. An option for the unusual and unexpected termination of the Rocky Mountain insect (Orthoptera: Acrididae). Environ. Entomol. 19, 1194– 1205 (1990 ).

    Article

    Google Scholar

  • Salcido, D. M., Forister, M. L., Garcia Lopez, H. & & Dyer, L. A. Loss of dominant caterpillar genera in a safeguarded tropical forest. Sci. Rep. 10, 422 (2020 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Habel, J. C., Trusch, R., Schmitt, T., Ochse, M. & & Ulrich, W. Long-term massive decrease in relative abundances of butterfly and burnet moth types throughout south-western Germany. Sci. Rep. 9, 14921 (2019 ).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Welti, E. A. R., Roeder, K. A., de Beurs, K. M., Joern, A. & & Kaspari, M. Nutrient dilution and environment cycles underlie decreases in a dominant insect herbivore. Proc. Natl Acad. Sci. U.S.A. 117, 7271– 7275 (2020 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Roubik, D. W. et al. Long-lasting (1979– 2019) characteristics of safeguarded orchid bees in Panama. Conserv. Sci. Pract. 3, e543 (2021 ).

    Article

    Google Scholar

  • Genung, M. A., Fox, J. & & Winfree, R. Species loss drives environment function in experiments, however in nature the significance of types loss depends upon supremacy. Glob. Ecol. Biogeogr. 29, 1531– 1541 (2020 ).

    Article

    Google Scholar

  • Smith, M. D. & & Knapp, A. K. Dominant types keep environment function with non-random types loss. Ecol. Lett. 6, 509– 517 (2003 ).

    Article

    Google Scholar

  • Kleijn, D. et al. Shipment of crop pollination services is an inadequate argument for wild pollinator preservation. Nat. Commun. 6, 7414 (2015 ).

    Article
    ADS
    PubMed

    Google Scholar

  • Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & & Cariveau, D. P. Abundance of typical types, not types richness, drives shipment of a real-world environment service. Ecol. Lett. 18, 626– 635 (2015 ).

    Article
    PubMed

    Google Scholar

  • Kamiya, T., O’Dwyer, K., Nakagawa, S. & & Poulin, R. What figures out types richness of parasitic organisms? A meta-analysis throughout animal, plant and fungal hosts. Biol. Rev. 89, 123– 134 (2014 ).

    Article
    PubMed

    Google Scholar

  • Fisher, A. R. A., Corbet, A. S. & & Williams, C. B. The variety of animals in a random sample of an animal population. J. Anim. Ecol. 12, 42– 58 (1943 ).

    Article

    Google Scholar

  • Prendergast, J. et al. The international population characteristics database. Knowledge Network for Biocomplexity https://doi.org/10.5063/F1BZ63Z8 (2010 ).

  • Dornelas, M. et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760– 786 (2018 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Pollard, E., Hall, M. L. & & Bibby, T. J. Monitoring the Abundance of Butterflies 1976– 1985 (Joint Nature Conservation Committee, 1986).

  • Thomsen, P. F. et al. Information from: Resource professionals lead regional insect neighborhood turnover connected with temperature level– analysis of an 18-year full-seasonal record of beetles and moths. Dryad Digital Repository https://doi.org/10.5061/dryad.s4945 (2016 ).

  • Rennie, S. et al. UK Environmental Change Network (ECN) moth information: 1992– 2015. NERC Environmental Information Data Centre https://doi.org/10.5285/a2a49f47-49b3-46da-a434-bb22e524c5d2 (2018 ).

  • Ellison, A. M. Ant assemblages in hemlock elimination experiment at Harvard Forest given that 2003. HF118. Harvard Forest Data Archive http://pasta.lternet.edu/package/doi/eml/knb-lter-hfr/118/30 (2017 ).

  • Rennie, S. et al. Ecological Change Network (ECN) butterfly information: 1993– 2015. NERC Environmental Information Data Centre https://doi.org/10.5285/5aeda581-b4f2-4e51-b1a6-890b6b3403a3 (2018 ).

  • Rennie, S. et al. UK Environmental Change Network (ECN) spittle bug information: 1993– 2015. NERC Environmental Information Data Centre https://doi.org/10.5285/aff433be-0869-4393-b765-9e6faad2a12b (2018 ).

  • Rennie, S. et al. UK Environmental Change Network (ECN) carabid beetle information: 1992– 2015. NERC Environmental Information Data Centre https://doi.org/10.5285/8385f864-dd41-410f-b248-028f923cb281 (2018 ).

  • Wolda, H. Trends in abundance of tropical forest pests. Oecologia 89, 47– 52 (1992 ).

    Article
    ADS
    PubMed

    Google Scholar

  • Wolda, H., Marek, J., Spitzer, K. & & Novak, I. Diversity and irregularity of Lepidoptera populations in metropolitan Brno, Czech Republic. Eur. J. Entomol. 91, 213– 226 (1994 ).


    Google Scholar

  • Lightfoot, D. Long-term core website insect characteristics for the Sevilleta National Wildlife Refuge, New Mexico (1992-2013). Environmental Data Initiative https://doi.org/10.6073/pasta/c1d40e9d0ec610bb74d02741e9d22576 (2010 ).

  • Meijer, J. & & Barendregt, A. Forty years of undisturbed modification in the ground home animals in the Lauwersmeer, a recovered tidal estuary of the Dutch Waddensea. Entomol. Ber. 78, 122– 151 (2018 ).


    Google Scholar

  • Honek, A., Martinkova, Z., Kindlmann, P., Ameixa, O. M. C. C. & & Dixon, A. F. G. Long-term patterns in the structure of aphidophagous coccinellid neighborhoods in Central Europe. Insect Conserv. Scuba divers. 7, 55– 63 (2014 ).

    Article

    Google Scholar

  • Belovsky, G. Grasshopper density. National Bison Range LTREB Database https://belovskylab.nd.edu/national-bison-range-ltreb-database/survey-data/grasshopper-data/ (2018 ).

  • Valtonen, A. et al. Long-lasting types loss and homogenization of moth neighborhoods in Central Europe. J. Anim. Ecol. 86, 730– 738 (2017 ).

    Article
    PubMed

    Google Scholar

  • Lightfoot, D. Small Mammal Exclosure Study (SMES) ant information from Chihuahuan desert meadow and shrubland at the Sevilleta National Wildlife Refuge, New Mexico (1995– 2005). Environmental Data Initiative https://doi.org/10.6073/pasta/c4963aa3363d18ac99bd40307db2249d (2010 ).

  • Grimm, N. & & Childers, D. Long-term tracking of ground-dwelling arthropods in main Arizona– Phoenix, continuous given that 1998. Environmental Data Initiative https://doi.org/10.6073/pasta/74d30fdbb17e0f76b54548ce74bf27e4 (2018 ).

  • Pennings, S. C. Long-term mid-marsh insect abundance and types variety at 8 GCE-LTER tasting websites. Environmental Data Initiative https://doi.org/10.6073/pasta/ec9d524b8f13c000e8e8a225d5a23c7b (2016 ).

  • Gandhi, K. J. K., Epstein, M. E., Koehle, J. J. & & Purrington, F. F. A quarter of a century succession of epigaeic beetle assemblages in remnant environments in an urbanized matrix (Coleoptera, Carabidae). ZooKeys 147, 667– 689 (2011 ).

    Article

    Google Scholar

  • Pizzolotto, R., Gobbi, M. & & Brandmayr, P. Changes in ground beetle assemblages above and listed below the treeline of the Dolomites after nearly 30 years (1980/2009). Ecol. Evol. 4, 1284– 1294 (2014 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Roubik, D. W. Ups and downs in pollinator populations: when exists a decrease? Ecol. Soc. 5, art2 (2001 ).


    Google Scholar

  • Grøtan, V., Lande, R., Chacon, I. A. & & Devries, P. J. Seasonal cycles of variety and resemblance in a Central American jungle butterfly neighborhood. Ecography 37, 509– 516 (2014 ).

    Article
    ADS

    Google Scholar

  • Grøtan, V., Lande, R., Engen, S., Sæther, B. E. & & Devries, P. J. Seasonal cycles of types variety and resemblance in a tropical butterfly neighborhood. J. Anim. Ecol. 81, 714– 723 (2012 ).

    Article
    PubMed

    Google Scholar

  • Meserve, P. L., Vásquez, H., Kelt, D. A., Gutiérrez, J. R. & & Milstead, W. B. Patterns in arthropod abundance and biomass in the semiarid thorn scrub of Bosque Fray Jorge National Park, north-central Chile: an initial evaluation. J. Arid Environ. 126, 68– 75 (2016 ).

    Article
    ADS

    Google Scholar

  • White, E. The altering abundance of moths in a tussock meadow, 1962– 1989, and 50- to 70-year patterns. N. Z. J. Ecol. 15, 5– 22 (1991 ).


    Google Scholar

  • Quintero, I. & & Roslin, T. Rapid healing of dung beetle neighborhoods following environment fragmentation in main Amazonia. Ecology 86, 3303– 3311 (2005 ).

    Article

    Google Scholar

  • Rybalov, L. & & Kamayev, I. Comparative analysis and long-lasting characteristics of soil macrofauna in forest-tundra ecotone of the Khibiny mountains. Russ. Entomol. J. 21, 179– 183 (2012 ).

    Article

    Google Scholar

  • Kočíková, L., Čanády, A. & & Panigaj, L. Change in a butterfly neighborhood on a slowly overgrowing website. Russ. J. Ecol. 45, 391– 398 (2014 ).

    Article

    Google Scholar

  • Shafigullina, S. M. The function of floods in the long-lasting characteristics of geobiont and chortobiont neighborhoods on islands of the Kuibyshev Reservoir. Russ. J. Ecol. 40, 218– 226 (2009 ).

    Article

    Google Scholar

  • Valtonen, A. et al. Tropical phenology: bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere 4, 1– 28 (2013 ).

    Article

    Google Scholar

  • Daghighi, E., Koehler, H., Kesel, R. & & Filser, J. Long-term succession of Collembola neighborhoods in relation to environment modification and plants. Pedobiologia 64, 25– 38 (2017 ).

    Article

    Google Scholar

  • Gallé, L. Climate modification impoverishes and homogenizes ants’ neighborhood structure: a long term research study. Community Ecol. 18, 128– 136 (2017 ).

    Article

    Google Scholar

  • Hodecek, J., Kuras, T., Sipos, J. & & Dolny, A. Post-industrial locations as successional environments: long-lasting modifications of practical variety in beetle neighborhoods. Basic Appl. Ecol. 16, 629– 640 (2015 ).

    Article

    Google Scholar

  • Ananin, A. A. & & Ananina, T. L. Long-term characteristics of birds and ground beetles population density in catena of Barguzinskiy Ridge (Northern Pribaikalye)[in Russian] Izv. Samar. Nauchnogo Cent. Ross. Akad. Nauk Proc. Samara Res. Branch Russ. Acad. Sci. 1, 1041– 1044 (2011 ).


    Google Scholar

  • Tsurikov, M. N. Long-term characteristics of the types structure of herpetobiont and hortobiont beetles (Coleoptera) in the Galichya Gora Nature Reserve. Entomol. Rev. 96, 191– 198 (2016 ).

    Article

    Google Scholar

  • Fedyunin, V. A. On population characteristics of Ichneumon flies in the Visim Reserve. Russ. J. Ecol. 39, 225– 228 (2008 ).

    Article

    Google Scholar

  • Aarhus University. Greenland Ecosystem Monitoring Database http://data.g-e-m.dk/ (2018 ).

  • Martikainen, P. & & Kaila, L. Sampling saproxylic beetles: lessons from a 10-year tracking research study. Biol. Conserv. 120, 171– 181 (2004 ).

    Article

    Google Scholar

  • Nemkov, V. A. & & Sapiga, E. V. Impact of fires on the animals of terrestrial arthropods in safeguarded steppe communities. Russ. J. Ecol. 41, 173– 179 (2010 ).

    Article

    Google Scholar

  • Korobov, E. D. The impact of windfall disruptions on the structure and characteristics of ground beetle populations (Coleoptera, Carabidae) in the spruce forests of the Central Forest Nature Reserve. Russ. J. Ecol. 46, 595– 599 (2015 ).

    Article

    Google Scholar

  • Steinwandter, M., Schlick-Steiner, B. C., Seeber, G. U. H., Steiner, F. M. & & Seeber, J. Effects of Alpine land-use modifications: soil macrofauna neighborhood reviewed. Ecol. Evol. 7, 5389– 5399 (2017 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Kwon, T.-S., Kim, Y. S., Lee, S. W. & & Park, Y.-S. Modifications of soil arthropod neighborhoods in temperate forests over ten years (1998– 2007). J. Asia-Pac. Entomol. 19, 181– 189 (2016 ).

    Article

    Google Scholar

  • Holmes, R. Long-term patterns in abundance of Lepidoptera larvae at Hubbard Brook Experimental Forest and 3 extra northern wood forest websites, 1986– 1997. Hubbard Brook Data Archive http://data.hubbardbrook.org/data/dataset.php?id=82 (2018 ).

  • Bisevac, L. & & Majer, J. D. Comparative research study of ant neighborhoods of fixed up mineral sand mines and heathland, Western Australia. Restor. Ecol. 7, 117– 126 (1999 ).

    Article

    Google Scholar

  • Blandenier, G., Bruggisser, O. T. & & Bersier, L.-F. Do spiders react to international modification? A research study on the phenology of ballooning spiders in Switzerland. Ecoscience 21, 79– 95 (2014 ).

    Article

    Google Scholar

  • Ernest, S. K. M. Portal ant information. GitHub https://github.com/weecology/PortalData/tree/master/Ants (2018 ).

  • Grechanichenko, T. Linear and cyclic long-lasting patterns in the characteristics of ground beetles activity (Carabidae, Coleoptera). Aktual. Probl. Gumanit. Estestv. Nauk 4– 1, 44– 49 (2014 ).


    Google Scholar

  • Kuznetsova, N. Organization of Communities of Soil-Dwelling Collembola [in Russian] (Prometei, 2005).

  • Gryuntal, S. Y. Organization of Communities of Ground Beetles (Coleoptera; Carabidae) in Forest Biocoenoses of East-European (Russian) Plain [in Russian] (Gallea-Print, 2008).

  • Guseva, O. G. Rove beetles (Coleoptera, Staphylindae) in farming landscape of Leningrad area. Plant Prot. News 94, 39– 42 (2017 ).


    Google Scholar

  • Mutin, V. A. in A.I. Kurentsov’s Annual Memorial Meetings: Vladivostok (ed. Storozhenko, S. Yu.) 325– 337 (Danaulka, 2015).

  • Sasova, L. E. Population of Day Lepidoptera (Lepidoptera, Diurna) of State Nature Reserve “Ussuriysky” Named After V.L. Komarov (Far-Eastern State University, 2008).

  • Shlyakhtenok, A. S. Studying the characteristics of the complex of the digging wasps (Hymenoptera, Sphecidae) in the deserted zone of the Chernobyl power station. Ecologiya 5, 391– 394 (2007 ).


    Google Scholar

  • Chen, I.-C. et al. Uneven border shifts of tropical montane Lepidoptera over 4 years of environment warming. Glob. Ecol. Biogeogr. 20, 34– 45 (2011 ).

    Article

    Google Scholar

  • Shlyakhtenok, A. S. Hymenoptera Aculeates of raised bogs in Belarus. Zool. Zhurnal 86, 295– 306 (2007 ).


    Google Scholar

  • Ploquin, E. F., Herrera, J. M. & & Obeso, J. R. Bumblebee neighborhood homogenization after uphill shifts in montane locations of northern Spain. Oecologia 173, 1649– 1660 (2013 ).

    Article
    ADS
    PubMed

    Google Scholar

  • Shlyakhtenok, A. S. Aculeate Hymenoptera of the household Chrysididae of Byelorussia. Vestn. Zool. 41, 433– 438 (2007 ).


    Google Scholar

  • Nitochko, M. I. Structure and dynamic of population of ground beetles and tenebrionid beetles (Coleoptera: Carabidae, Tenebrionidae) of sand steppe of Black Sea Biosphere Reserve NAS of Ukraine. Optim. Prot. Ecosyst. 7, 62– 73 (2012 ).


    Google Scholar

  • Szabó, S., Árnyas, E., Tóthmérész, B. & & Varga, Z. Long-term light trap research study on the macro-moth (Lepidoptera: Macroheterocera) animals of the Aggtelek National Park. Acta Zool. Acad. Sci. Hung. 53, 257– 269 (2007 ).


    Google Scholar

  • Schuch, S., Bock, J., Krause, B., Wesche, K. & & Schaefer, M. Long-term population patterns in 3 meadow insect groups: a relative analysis of 1951 and 2009. J. Appl. Entomol. 136, 321– 331 (2012 ).

    Article

    Google Scholar

  • Schuch, S., Wesche, K. & & Schaefer, M. Long-term decrease in the abundance of planthoppers and leafhoppers (Auchenorrhyncha) in Central European safeguarded dry meadows. Biol. Conserv. 149, 75– 83 (2012 ).

    Article

    Google Scholar

  • Cormay, O. et al. Analysis of keeping track of information where butterflies fly all year. Ecol. Appl. 30, e02196 (2020 ).

    Article

    Google Scholar

  • Schowalter, T. Canopy invertebrate actions to Hurricane Hugo. Environmental Data Initiative https://doi.org/10.6073/pasta/82d334e74866175c791e557d8c303a62 (2018 ).

  • Hu, G. et al. Mass seasonal bioflows of high-flying insect migrants. Science 354, 1584– 1587 (2016 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Aebischer, N. J. Assessing pesticide results on non-target invertebrates utilizing long-lasting tracking and time-series modelling. Funct. Ecol. 4, 369– 373 (1990 ).

    Article

    Google Scholar

  • Benton, T. G., Bryant, D. M., Cole, L. & & Crick, H. Q. P. Linking farming practice to bug and bird populations: a historic research study over 3 years. J. Appl. Ecol. 39, 673– 687 (2002 ).

    Article

    Google Scholar

  • Brown, P. M. J. & & Roy, H. E. Native ladybird decrease triggered by the intrusive harlequin ladybird Harmonia axyridis: proof from a long-lasting field research study. Insect Conserv. Scuba divers. 11, 230– 239 (2018 ).

    Article

    Google Scholar

  • Irish National Biodiversity Data Centre. Irish Butterfly Monitoring Scheme. Incident dataset. GBIF https://doi.org/10.15468/4wwpyc (2018 ).

  • Zhang, X. et al. Modifications in assemblages and variety patterns of Carabidae (Coleoptera) from 1997 to 2014 in a desalinized, intensively cultivated farming landscape in northern China. Coleopt. Bull. 72, 597– 611 (2018 ).

    Article

    Google Scholar

  • Blanchet, F. G. et al. Associated herbivore types reveal comparable temporal characteristics. J. Anim. Ecol. 87, 801– 812 (2018 ).

    Article
    PubMed

    Google Scholar

  • Blanchet, F. et al. Information from: Related herbivore types reveal comparable temporal characteristics. Dryad Digital Repository https://doi.org/10.5061/dryad.sh02b (2018 ).

  • Homburg, K. et al. Where have all the beetles gone? Long‐term research study exposes carabid types decrease in a nature reserve in Northern Germany. Insect Conserv. Scuba divers. 12, 268– 277 (2019 ).

    Article

    Google Scholar

  • Cuesta, E. & & Lobo, J. M. A contrast of dung beetle assemblages (Coleoptera, Scarabaeoidea) gathered 34 years apart in an Iberian mountain region. J. Insect Conserv. 23, 101– 110 (2019 ).

    Article

    Google Scholar

  • Gran, O. & & Götmark, F. Long-term speculative management in Swedish combined oak-rich forests has a favorable result on saproxylic beetles after 10 years. Biodivers. Conserv. 28, 1451– 1472 (2019 ).

    Article

    Google Scholar

  • Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & & Haddad, N. M. Butterfly abundance decreases over 20 years of organized tracking in Ohio, USA. PLoS One 14, e0216270 (2019 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Petersen, H., Jucevica, E. & & Gjelstrup, P. Long-term modifications in collembolan neighborhoods in grazed and non-grazed deserted arable fields in Denmark. Pedobiologia 48, 559– 573 (2004 ).

    Article

    Google Scholar

  • Hallmann, C. A. et al. Decreasing abundance of beetles, moths and caddisflies in the Netherlands. Insect Conserv. Scuba divers. 13, 127– 139 (2020 ).

    Article

    Google Scholar

  • Antão, L. H., Pöyry, J., Leinonen, R. & & Roslin, T. Contrasting latitudinal patterns in variety and stability in a high-latitude species-rich moth neighborhood. Glob. Ecol. Biogeogr. 29, 896– 907 (2020 ).

    Article

    Google Scholar

  • Antão, L. H., Pöyry, J., Leinonen, R. & & Roslin, T. Contrasting latitudinal patterns in variety and stability in a high-latitude species-rich moth neighborhood. Dryad Digital Repository https://doi.org/10.5061/dryad.905qfttgj (2020 ).

  • Costa, F. R. C. et al. Results of environment modification on main amazonian forests: a two-decades synthesis of keeping track of tropical biodiversity. Oecologia Aust. 24, 317– 335 (2020 ).

    Article

    Google Scholar

  • Filho, W. M., Flechtmann, C. A. H., Godoy, Wesley, A. C. & & Bjornstad, O. N. The effect of the presented Digitonthophagus gazella on a native dung beetle neighborhood in Brazil throughout 26 years. Biol. Intrusions 20, 963– 979 (2018 ).

    Article

    Google Scholar

  • Pereira, F. W., Carneiro, L. & & Gonçalves, R. B. More losses than gains in ground-nesting bees over 60 years of urbanization. Urban Ecosyst. 24, 233– 242 (2021 ).

    Article

    Google Scholar

  • da Rocha-Filho, L. C., Montagnana, P. C., Boscolo, D. & & Garófalo, C. A. Species turnover and low stability in a neighborhood of euglossine bees (Hymenoptera: Apidae) tested within 28 years in a metropolitan forest piece. Apidologie 51, 921– 934 (2020 ).

    Article

    Google Scholar

  • Harris, J. E., Rodenhouse, N. L. & & Holmes, R. T. Decline in beetle abundance and variety in an undamaged temperate forest connected to environment warming. Biol. Conserv. 240, 108219 (2019 ).

    Article

    Google Scholar

  • Luk, C.-L., Basset, Y., Kongnoo, P., Hau, B. C. H. & & Bonebrake, T. C. Data from: Inter-annual tracking enhances variety evaluation of tropical butterfly assemblages. Dryad Digital Repository https://doi.org/10.5061/dryad.j35fq7r (2019 ).

  • Luk, C.-L., Basset, Y., Kongnoo, P., Hau, B. C. H. & & Bonebrake, T. C. Inter-annual tracking enhances variety evaluation of tropical butterfly assemblages. Biotropica 51, 519– 528 (2019 ).

    Article

    Google Scholar

  • Guo, J. et al. Long-lasting shifts in abundance of (migratory) crop-feeding and useful insect types in northeastern Asia. J. Pest Sci. 93, 583– 594 (2020 ).

    Article

    Google Scholar

  • Gibb, H., Grossman, B. F., Dickman, C. R., Decker, O. & & Wardle, G. M. Long-term actions of desert ant assemblages to environment. J. Anim. Ecol. 88, 1549– 1563 (2019 ).

    Article
    PubMed

    Google Scholar

  • Gibb, H., Grossman, B. F., Dickman, C. R., Decker, O. & & Wardle, G. M. Data from: Long-term actions of desert ant assemblages to environment. Dryad Digital Repository https://doi.org/10.5061/dryad.vc80r13 (2019 ).

  • Choi, S.-W. Long-term (2005– 2017) Macromoth Community Monitoring at Mt. Jirisan National Park, South Korea https://db.cger.nies.go.jp/JaLTER/metacat/metacat?action=read&qformat=jalter-en&sessionid=&docid=ERDP-2019-02.1 (ERDP, 2019).

  • Choi, S.-W., An, J.-S., Kim, N.-H., Lee, S. & & Ahn, N. Long-term (2005– 2017) macromoth neighborhood tracking at Mt. Jirisan National Park, South Korea. Ecol. Res. 34, 443– 443 (2019 ).

    Article

    Google Scholar

  • Koivula, M. J., Venn, S., Hakola, P. & & Niemelä, J. Responses of boreal ground beetles (Coleoptera, Carabidae) to various logging programs 10 years post harvest. For. Ecol. Manag. 436, 27– 38 (2019 ).

    Article

    Google Scholar

  • Seymour, M. et al. Ecological neighborhood characteristics: 20 years of moth tasting exposes the significance of generalists for neighborhood stability. Basic Appl. Ecol. 49, 34– 44 (2020 ).

    Article

    Google Scholar

  • Zhou, Z. et al. Variety and population characteristics of flies in 4 environment in Wuhan location. J. Xinjang Norm. Univ. Nat. Sci. Ed. 33 , 70– 75 (2020 ).


    Google Scholar
    .

  • Guo, H. et al. The structure, spaciotemporal characteristics, and variety of mosquito neighborhoods in Wuhan. Chin. J. Appl. Entomol. 57, 955– 962 (2020 ).


    Google Scholar

  • Cardoso, M. C. & & Gonçalves, R. B. Reduction by half: the effect on bees of 34 years of urbanization. Urban Ecosyst. 21, 943– 949 (2018 ).

    Article

    Google Scholar

  • Martins, A. C., Gonçalves, R. B. & & Melo, G. A. R. Changes in wild bee animals of a meadow in Brazil expose unfavorable results connected with growing urbanization throughout the last 40 years. Zool. Curitiba 30, 157– 176 (2013 ).


    Google Scholar

  • Hsieh, T. C., Ma, K. H. & & Chao, A. iNEXT: an R plan for rarefaction and projection of types variety (Hill numbers). Methods Ecol. Evol. 7, 1451– 1456 (2016 ).

    Article

    Google Scholar

  • Oksanen, J. et al. vegan: Community Ecology Package. R variation 2.6-4 http://CRAN.R-project.org/package=vegan (2020 ).

  • McGill, B. J. in Biological Diversity: Frontiers in Measurement and Assessment (eds. Magurran, A. E. & & McGill, B. J.) 105– 122 (Oxford Univ. Press, 2011 ).

  • Daskalova, G. N. &, Myers-Smith, I. H. & Godlee, J. L. Rare and typical vertebrates cover a large spectrum of population patterns. Nat. Commun. 11, 4394 (2020 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Barnett, A. G., van der Pols, J. C. & & Dobson, A. J. Regression to the mean: what it is and how to handle it. Int. J. Epidemiol. 34, 215– 220 (2005 ).

    Article
    PubMed

    Google Scholar

  • Driessen, M. M. & & Kirkpatrick, J. B. Higher taxa can be efficient surrogates for species-level information in finding modifications in invertebrate assemblage structure due to disruption: a case research study utilizing a broad series of orders. Austral. Entomol. 58, 361– 369 (2019 ).

    Article

    Google Scholar

  • Rue, H., Martino, S. & & Chopin, N. Approximate Bayesian reasoning for hidden Gaussian designs by utilizing incorporated embedded Laplace approximations. J. R. Stat. Soc.B 71, 319– 392 (2009 ).

    Article
    MathSciNet

    Google Scholar

  • R Core Team. R: A Language And Environment For Statistical Computing v. 4.2.2 (R Foundation for Statistical Computing, 2022).

  • Wessel, P. & & Smith, W. H. F. An international, self-consistent, hierarchical, high-resolution coastline database. J. Geophys. Res. Strong Earth 101, 8741– 8743 (1996 ).

    Article

    Google Scholar

  • Sandvik, B. thematicmapping.org. https://www.thematicmapping.org/downloads/world_borders.php (2018 ).

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here