Discovery of a structural class of antibiotics with explainable deep learning

0
7


  • Stokes, J. M. et al. A deep knowing method to antibiotic discovery. Cell 180, 688– 702 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Imai, Y. et al. A brand-new antibiotic selectively eliminates Gram-negative pathogens. Nature 576, 459– 464 (2019 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Ling, L. L. et al. A brand-new antibiotic eliminates pathogens without noticeable resistance. Nature 517, 455– 459 (2015 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Martin, J. K. II et al. A dual-mechanism antibiotic prevents and eliminates gram-negative germs drug resistance. Cell 181, 1518– 1532. e14 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 371– 387 (2013 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Culp, E. J. et al. Evolution-guided discovery of prescription antibiotics that prevent peptidoglycan renovation. Nature 578, 582– 587 (2020 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Mitcheltree, M. J. et al. An artificial antibiotic class getting rid of bacterial multidrug resistance. Nature 599, 507– 512 (2021 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Durand-Reville, T. F. et al. Logical style of a brand-new antibiotic class for drug-resistant infections. Nature 597, 698– 702 (2021 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Silver, L. L. Challenges of anti-bacterial discovery. Clin. Microbiol. Rev. 24, 71– 109 (2011 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Gilmer, J. et al. Neural message passing for quantum chemistry. In Proc. 34 th International Conference on Machine Learning (2017 ).

  • Yang, K. et al. Evaluating found out molecular representations for residential or commercial property forecast. J. Chem. Inf. Design. 59, 3370– 3388 (2019 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Wong, F. et al. Leveraging expert system in the battle versus contagious illness. Science 381, 164– 170 (2023 ).

    Article
    ADS
    MathSciNet
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Melo, M. C. R., Maasch, J. R. M. A. & & de la Fuente-Nunez, C. Accelerating antibiotic discovery through expert system. Commun. Biol. 4, 1050 (2021 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii Nat. Chem. Biol. 19, 1342– 1350 (2023 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Wong, F. et al. Finding small-molecule senolytics with deep neural networks. Nat. Aging 3, 734– 750 (2023 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations (The Review on Antimicrobial Resistance, 2014)

  • Corsello, S. M. et al. The Drug Repurposing Hub: a next-generation drug library and info resource. Nat. Medication. 23, 405– 408 (2017 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Sterling, T. & & Irwin, J. J. ZINC 15– ligand discovery for everybody. J. Chem. Inf. Design. 55, 2324– 2337 (2015 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Camacho, D. M. et al. Next-generation maker finding out for biological networks. Cell 173, 1581– 1592 (2018 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Rudin, C. Stop describing black box maker finding out designs for high stakes choices and utilize interpretable designs rather. Nat. Mach. Intell. 1, 206– 215 (2019 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Lee, A. S. et al. Methicillin-resistant Staphylococcus aureus Nat. Rev. Dis. Guides 4, 18033 (2018 ).

    Article
    PubMed

    Google Scholar

  • Toxicology in the 21st century. National Center for Advancing Translational Sciences https://tripod.nih.gov/tox/ (accessed 20 October 2022).

  • The Human Metabolome Database. https://hmdb.ca/metabolites (accessed 20 October 2022).

  • M-cule purchaseable database (in-stock), ver. 200601. https://mcule.com/database/ (accessed 27 June 2020).

  • Van der Maaten, L. & & Hinton, G. Visualizing information utilizing t– SNE. J. Mach. Find out. Res. 9, 2579– 2605 (2008 ).


    Google Scholar

  • Jin, W., Barzilay, R. & & Jaakkola, T. Multi-objective particle generation utilizing interpretable bases. In Proc. 37th International Conference on Machine Learning 450, 4849– 4859 (2020 ).

  • Silver, D. et al. Mastering the video game of Go without human understanding. Nature 550, 354– 359 (2017 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Cao, Y., Jiang, T. & & Girke, T. An optimum typical substructure-based algorithm for browsing and anticipating drug-like substances. Bioinformatics 24, i366– i374 (2008 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Muratov, E. N. et al. QSAR without borders. Chem. Soc. Rev. 49, 3525– 3564 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Baell, J. B. & & Holloway, G. A. New substructure filters for elimination of pan assay disturbance substances (PAINS) from evaluating libraries and for their exemption in bioassays. J. Med. Chem. 53, 2719– 2740 (2010 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Brenk, R. et al. Lessons gained from putting together screening libraries for drug discovery for ignored illness. ChemMedChem 3, 435– 444 (2008 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Lipinski, C. A., Lombardo, F., Dominy, B. W. & & Feeney, P. J. Computational and speculative methods to approximate solubility and permeability in drug discovery and advancement settings. Adv. Drug. Dis. Rev. 23, 3– 25 (1997 ).

    Article
    CAS

    Google Scholar

  • Ghose, A. K., Viswanadhan, V. N. & & Wendoloski, J. J. A knowledge-based method in developing medical or combinatorial chemistry libraries for drug discovery. 1. A quantitative and qualitative characterization of understood drug databases. J. Comb. Chem. 1, 55– 68 (1999 ).

    Article
    CAS
    PubMed

    Google Scholar

  • O’Shea, R. & & Moser, H. E. Physicochemical homes of anti-bacterial substances: ramifications for drug discovery. J. Med. Chem. 51, 2871– 2878 (2008 ).

    Article
    PubMed

    Google Scholar

  • Wong, F. et al. Reactive metabolic by-products add to antibiotic lethality under anaerobic conditions. Mol. Cell 82, 3499– 3512 (2022 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Wong, F. et al. Cytoplasmic condensation caused by membrane damage is connected with antibiotic lethality. Nat. Commun. 12, 2321 (2021 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Wong, F. et al. Comprehending beta-lactam-induced lysis at the single-cell level. Front. Microbiol. 12, 712007 (2021 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Wong, F. et al. Mechanics and characteristics of bacterial cell lysis. Biophys. J. 116, 2378– 2389 (2019 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zheng, E. J. et al. Discovery of prescription antibiotics that selectively eliminate metabolically inactive germs. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2023.10.026 (2023 ).

  • Farha, M. A., Verschoor, C. P., Bowdish, D. & & Brown, E. D. Collapsing the proton intention force to determine synergistic mixes versus Staphylococcus aureus Chem. Biol. 20, 1168– 1178 (2013 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Hurdle, J. G. Targeting bacterial membrane function: an underexploited system for dealing with consistent infections. Nat. Rev. Microbiol. 9, 62– 75 (2011 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Antibiotic Resistance Threats in the United States, 2019. Centers for Disease Control and Prevention https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed 20 September 2021).

  • Lewis, K. The science of antibiotic discovery. Cell 181, 29– 45 (2020 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Walsh, C. Where will brand-new prescription antibiotics originate from? Nat. Rev. Microbiol. 1, 65– 70 (2003 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Ying, R., Bourgeois, D., You, J., Zitnik, M. & & Leskovic, J. GNNExplainer: Generating descriptions for chart neural networks. Adv. Neural. Inf. Process. Syst. 32, 9240– 9251 (2019 ).

    PubMed
    PubMed Central

    Google Scholar

  • Jiménez-Luna, J., Grisoni, F. & & Schneider, G. Drug discovery with explainable expert system. Nat. Mach. Intell. 2, 573– 584 (2020 ).

    Article

    Google Scholar

  • Yuan, H., Yu, H., Gui, S. & & Ji, S. Explainability in chart neural networks: a taxonomic study. IEEE Trans. Pattern Anal. Mach. Intell. 45, 5782– 5799 (2023 ).

    PubMed

    Google Scholar

  • DeLong, E. R., DeLong, D. M. & & Clarke-Pearson, D. L. Comparing the locations under 2 or more associated receiver operating particular curves: a nonparametric method. Biometrics 44, 837– 845 (1988 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Kazeev, N. The quick variation of DeLong’s approach for calculating the covariance of unadjusted AUC. https://github.com/yandexdataschool/roc_comparison (accessed 21 July 2023).

  • Rosin, C. D. Multi-armed outlaws with episode context. Ann. Mathematics. Artif. Intell. 61, 203– 230 (2011 ).

    Article
    MathSciNet

    Google Scholar

  • Wang, Y., Backman, T. W. H., Horan, K. & & Girke, T. fmcsR: inequality tolerant optimum typical foundation browsing in R. Bioinformatics 29, 2792– 2794 (2013 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Daina, A., Michielin, O. & & Zoete, V. SwissADME: a complimentary web tool to assess pharmacokinetics, drug-likeness and medical chemistry friendliness of little particles. Sci Rep. 7, 42717 (2017 ).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Wong, F. et al. Benchmarking AlphaFold‐enabled molecular docking forecasts for antibiotic discovery. Mol. Syst. Biol. 18, e11081 (2022 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Walker, B. J. et al. Pilon: an incorporated tool for extensive microbial alternative detection and genome assembly enhancement. PLoS ONE 9, e112963 (2014 ).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Greco, I. et al. Connection in between hemolytic activity, cytotoxicity and systemic in vivo toxicity of artificial antimicrobial peptides. Sci Rep. 6, 13206 (2020 ).

    Article
    ADS

    Google Scholar

  • Krol, L. R. Permutation Test. https://github.com/lrkrol/permutationTest (accessed 22 July 2023).

  • Wong, F. et al. Supporting code for: discovery of a structural class of prescription antibiotics with explainable deep knowing. Zenodo https://doi.org/10.5281/zenodo.10095879 (2023 ).

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here