Cryo-EM structure of the human cardiac myosin filament

0
7


  • Wang, L., Geist, J., Grogan, A., Hu, L. R. & & Kontrogianni-Konstantopoulos, A. Thick filament protein network, functions, and illness association. Compr. Physiol. 8 , 631– 709( 2018).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Huxley, H. E. Electron microscopic lense research studies on the structure of artificial and natural protein filaments from striated muscle. J. Mol. Biol. 7, 281– 308 (1963 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Hooijman, P., Stewart, M. A. & & Cooke, R. A brand-new state of heart myosin with really sluggish ATP turnover: a possible cardioprotective system in the heart. Biophys. J. 100, 1969– 1976 (2011 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • de Tombe, P. P. et al. Myofilament length reliant activation. J. Mol. Cell. Cardiol. 48, 851– 858 (2010 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Alamo, L. et al. Results of myosin versions on interacting-heads concept discuss unique hypertrophic and dilated cardiomyopathy phenotypes. eLife https://doi.org/10.7554/eLife.24634 (2017 ).

  • Nag, S. et al. The myosin mesa and the basis of hypercontractility triggered by hypertrophic cardiomyopathy anomalies. Nat. Struct. Mol. Biol. 24, 525– 533 (2017 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Geeves, M. A. & & Holmes, K. C. Structural system of contraction. Annu. Rev. Biochem. 68, 687– 728 (1999 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Kensler, R. W. The mammalian heart muscle thick filament: crossbridge plan. J. Struct. Biol. 149, 303– 312 (2005 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Craig, R. & & Woodhead, J. L. Structure and function of myosin filaments. Curr. Opin. Struct. Biol. 16, 204– 212 (2006 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Wendt, T., Taylor, D., Trybus, K. M. & & Taylor, K. Three-dimensional image restoration of dephosphorylated smooth muscle heavy meromyosin exposes asymmetry in the interaction in between myosin heads and positioning of subfragment 2. Proc. Natl Acad. Sci. U.S.A. 98, 4361– 4366 (2001 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Woodhead, J. L. et al. Atomic design of a myosin filament in the unwinded state. Nature 436, 1195– 1199 (2005 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Alamo, L. et al. Three-dimensional restoration of tarantula myosin filaments recommends how phosphorylation might control myosin activity. J. Mol. Biol. 384, 780– 797 (2008 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lee, K. H. et al. Interacting-heads concept has actually been saved as a system of myosin II inhibition given that before the origin of animals. Proc. Natl Acad. Sci. U.S.A. 115, E1991– E2000 (2018 ).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Nelson, S., Beck-Previs, S., Sadayappan, S., Tong, C. & & Warshaw, D. M. Myosin-binding protein C supports, however is not the sole factor of SRX myosin in heart muscle. J. Gen. Physiol. https://doi.org/10.1085/jgp.202213276 (2023 ).

  • Cooke, R. The function of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle. Biophys. Rev. 3, 33– 45 (2011 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Anderson, R. L. et al. Figuring out the extremely unwinded state of human beta-cardiac myosin and the mode of action of mavacamten from myosin particles to muscle fibers. Proc. Natl Acad. Sci. U.S.A. 115, E8143– E8152 (2018 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zoghbi, M. E., Woodhead, J. L., Moss, R. L. & & Craig, R. Three-dimensional structure of vertebrate heart muscle myosin filaments. Proc. Natl Acad. Sci. U.S.A. 105, 2386– 2390 (2008 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Al-Khayat, H. A., Kensler, R. W., Squire, J. M., Marston, S. B. & & Morris, E. P. Atomic design of the human heart muscle myosin filament. Proc. Natl Acad. Sci. U.S.A. 110, 318– 323 (2013 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Tamborrini, D. et al. Structure of the native myosin filament in the unwinded heart sarcomere. Nature https://doi.org/10.1038/s41586-023-06690-5 (2023 ).

  • Padron, R., Dutta, D. & & Craig, R. Variants of the myosin interacting-heads concept. J. Gen. Physiol. https://doi.org/10.1085/jgp.202213249 (2023 ).

  • Hu, Z., Taylor, D. W., Reedy, M. K., Edwards, R. J. & & Taylor, K. A. Structure of myosin filaments from unwinded Lethocerus flight muscle by cryo-EM at 6 A resolution. Sci. Adv. 2, e1600058 (2016 ).

    Article
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Koubassova, N. A. et al. Interacting-heads concept describes the X-ray diffraction pattern of unwinded vertebrate skeletal muscle. Biophys. J. 121, 1354– 1366 (2022 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • McLachlan, A. D. & & Karn, J. Periodic charge circulations in the myosin rod amino acid series match cross-bridge spacings in muscle. Nature 299, 226– 231 (1982 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Taylor, K. C. et al. Avoid residues regulate the structural homes of the myosin rod and guide thick filament assembly. Proc. Natl Acad. Sci. U.S.A. 112, E3806– E3815 (2015 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Wray, J. S. Structure of the foundation in myosin filaments of muscle. Nature 277, 37– 40 (1979 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Squire, J. M. General design of myosin filament structure. 3. Molecular packaging plans in myosin filaments. J. Mol. Biol. 77, 291– 323 (1973 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Gregorio, C. C., Granzier, H., Sorimachi, H. & & Labeit, S. Muscle assembly: a titanic accomplishment? Curr. Opin. Cell Biol. 11, 18– 25 (1999 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Tskhovrebova, L. et al. Forming and versatility in the titin 11-domain super-repeat. J. Mol. Biol. 397, 1092– 1105 (2010 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Harris, S. P., Lyons, R. G. & & Bezold, K. L. In the thick of it: HCM-causing anomalies in myosin binding proteins of the thick filament. Circ. Res. 108, 751– 764 (2011 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Flashman, E., Redwood, C., Moolman-Smook, J. & & Watkins, H. Cardiac myosin binding protein C: its function in physiology and illness. Circ. Res. 94, 1279– 1289 (2004 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Granzier, H. L. & & Labeit, S. The huge protein titin: a significant gamer in myocardial mechanics, signaling, and illness. Circ. Res. 94, 284– 295 (2004 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Bucher, R. M., Svergun, D. I., Muhle-Goll, C. & & Mayans, O. The structure of the FnIII Tandem A77-A78 indicate an occasionally saved architecture in the myosin-binding area of titin. J. Mol. Biol. 401, 843– 853 (2010 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Lee, K., Harris, S. P., Sadayappan, S. & & Craig, R. Orientation of myosin binding protein C in the heart muscle sarcomere identified by domain-specific immuno-EM. J. Mol. Biol. 427, 274– 286 (2015 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Tonino, P., Kiss, B., Gohlke, J., Smith III, J. E. & & Granzier, H. Fine mapping titin’s C-zone: matching heart myosin-binding protein C stripes with titin’s super-repeats. J. Mol. Cell. Cardiol. 133, 47– 56 (2019 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Huxley, H. E. & & Brown, W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour throughout contraction and rigor. J. Mol. Biol. 30, 383– 434 (1967 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Sohn, R. L. et al. A 29 residue area of the sarcomeric myosin rod is needed for filament development. J. Mol. Biol. 266, 317– 330 (1997 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Houmeida, A., Holt, J., Tskhovrebova, L. & & Trinick, J. Studies of the interaction in between titin and myosin. J. Cell Biol. 131, 1471– 1481 (1995 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Muhle-Goll, C. et al. Functional and structural research studies of titin’s fn3 modules expose saved surface area patterns and binding to myosin S1– a possible function in the Frank-Starling system of the heart. J. Mol. Biol. 313, 431– 447 (2001 ).

    Article
    CAS
    PubMed

    Google Scholar

  • McNamara, J. W. et al. Ablation of heart myosin binding protein-C interferes with the super-relaxed state of myosin in murine cardiomyocytes. J. Mol. Cell. Cardiol. 94, 65– 71 (2016 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Heling, L., Geeves, M. A. & & Kad, N. M. MyBP-C: one protein to govern them all. J. Muscle Res. Cell Motil. 41, 91– 101 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Luther, P. K. et al. Direct visualization of myosin-binding protein C bridging myosin and actin filaments in undamaged muscle. Proc. Natl Acad. Sci. U.S.A. 108, 11423– 11428 (2011 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Reconditi, M. et al. Sarcomere-length reliance of myosin filament structure in skeletal muscle fibers of the frog. J. Physiol. 592, 1119– 1137 (2014 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Freiburg, A. & & Gautel, M. A molecular map of the interactions in between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur. J. Biochem. 235, 317– 323 (1996 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Bennett, P., Rees, M. & & Gautel, M. The axial positioning of titin on the muscle thick filament supports its function as a molecular ruler. J. Mol. Biol. 432, 4815– 4829 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Craig, R. & & Padron, R. Structural basis of the extremely- and hyper-relaxed states of myosin II. J. Gen. Physiol. https://doi.org/10.1085/jgp.202113012 (2022 ).

  • Grinzato, A. et al. Cryo-EM structure of the folded-back state of human β-cardiac myosin. Nat. Commun. 14, 3166 (2023 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Lowey, S., Saraswat, L. D., Liu, H., Volkmann, N. & & Hanein, D. Evidence for an interaction in between the SH3 domain and the N-terminal extension of the vital light chain in class II myosins. J. Mol. Biol. 371, 902– 913 (2007 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Blankenfeldt, W., Thoma, N. H., Wray, J. S., Gautel, M. & & Schlichting, I. Crystal structures of human heart β-myosin II S2-Δ offer insight into the practical function of the S2 subfragment. Proc. Natl Acad. Sci. U.S.A. 103, 17713– 17717 (2006 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Ait-Mou, Y. et al. Titin pressure adds to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins. Proc. Natl Acad. Sci. U.S.A. 113, 2306– 2311 (2016 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Brunello, E. et al. Myosin filament-based guideline of the characteristics of contraction in heart muscle. Proc. Natl Acad. Sci. U.S.A. 117, 8177– 8186 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Alamo, L. et al. Saved intramolecular interactions preserve myosin interacting-heads themes describing tarantula muscle super-relaxed state structural basis. J. Mol. Biol. 428, 1142– 1164 (2016 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Ma, W. et al. The super-relaxed state and length reliant activation in porcine myocardium. Circ. Res. 129, 617– 630 (2021 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Reconditi, M. et al. Myosin filament activation in the heart is tuned to the mechanical job. Proc. Natl Acad. Sci. U.S.A. 114, 3240– 3245 (2017 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Irving, M. Regulation of contraction by the thick filaments in skeletal muscle. Biophys. J. 113, 2579– 2594 (2017 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Espinoza-Fonseca, L. M., Kast, D. & & Thomas, D. D. Molecular characteristics simulations expose a disorder-to-order shift on phosphorylation of smooth muscle myosin. Biophys. J. 93, 2083– 2090 (2007 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Blair, C. A. et al. A Protocol for gathering human heart tissue for research study. VAD J. https://doi.org/10.13023/VAD.2016.12 (2016 ).

  • Chaponnier, C., Janmey, P. A. & & Yin, H. L. The actin filament-severing domain of plasma gelsolin. J. Cell Biol. 103, 1473– 1481 (1986 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Hidalgo, C., Padron, R., Horowitz, R., Zhao, F. Q. & & Craig, R. Purification of native myosin filaments from muscle. Biophys. J. 81, 2817– 2826 (2001 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Craig, R. Isolation, electron microscopy and 3D restoration of invertebrate muscle myofilaments. Methods 56, 33– 43 (2012 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Mastronarde, D. N. Automated electron microscopic lense tomography utilizing robust forecast of specimen motions. J. Struct. Biol. 152, 36– 51 (2005 ).

    Article
    PubMed

    Google Scholar

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & & Brubaker, M. A. cryoSPARC: algorithms for quick without supervision cryo-EM structure decision. Nat. Approaches 14, 290– 296 (2017 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Sanchez-Garcia, R. et al. DeepEMhancer: a deep knowing service for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Kidmose, R. T. et al. Namdinator– automated molecular characteristics versatile fitting of structural designs into cryo-EM and crystallography speculative maps. IUCrJ 6, 526– 531 (2019 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Emsley, P., Lohkamp, B., Scott, W. G. & & Cowtan, K. Features and advancement of Coot. Acta Crystallogr. D 66, 486– 501 (2010 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Jumper, J. et al. Extremely precise protein structure forecast with AlphaFold. Nature 596, 583– 589 (2021 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Liebschner, D. et al. Macromolecular structure decision utilizing X-rays, electrons and neutrons: current advancements in Phenix. Acta Crystallogr. D 75, 861– 877 (2019 ).

    Article
    CAS

    Google Scholar

  • Lopez-Blanco, J. R. & & Chacon, P. iMODFIT: robust and effective versatile fitting based upon vibrational analysis in internal collaborates. J. Struct. Biol. 184, 261– 270 (2013 ).

    Article
    PubMed

    Google Scholar

  • Croll, T. I. ISOLDE: a physically sensible environment for design structure into low-resolution electron-density maps. Acta Crystallogr. D 74, 519– 530 (2018 ).

    Article
    CAS

    Google Scholar

  • Williams, C. J. et al. MolProbity: more and much better referral information for enhanced all-atom structure recognition. Protein Sci. 27, 293– 315 (2018 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for designers, scientists, and teachers. Protein Sci. 30, 70– 82 (2021 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Maw, M. C. & & Rowe, A. J. Fraying of A-filaments into 3 subfilaments. Nature 286, 412– 414 (1980 ).

    Article
    CAS
    PubMed
    ADS

    Google Scholar

  • Squire, J. M. & & Knupp, C. X-ray diffraction research studies of muscle and the crossbridge cycle. Adv. Protein Chem. 71, 195– 255 (2005 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Belus, A. et al. The familial hypertrophic cardiomyopathy-associated myosin anomaly R403Q speeds up stress generation and relaxation of human heart myofibrils. J. Physiol. 586, 3639– 3644 (2008 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Takezawa, Y. et al. Backwards motions of cross-bridges by application of stretch and by binding of MgADP to skeletal muscle fibers in the rigor state as studied by X-ray diffraction. Biophys. J. 76, 1770– 1783 (1999 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Woodhead, J. L. & & Craig, R. Through thin and thick– interfilament interaction in muscle. Biophys. J. 109, 665– 667 (2015 ).

    Article
    CAS
    PubMed
    PubMed Central
    ADS

    Google Scholar

  • Brito, R. et al. A molecular design of phosphorylation-based activation and potentiation of tarantula muscle thick filaments. J. Mol. Biol. 414, 44– 61 (2011 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here