Condensin dysfunction is a reproductive isolating barrier in mice

0
7


  • Coyne, J. A. & & Orr, H. A. Speciation ( Sinauer, 2004).

  • Orr, H. A., Masly, J. P. & & Presgraves, D. C. Speciation genes. Curr. Opin. Genet. Dev. 14, 675– 679 (2004 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Johnson, N. A. Hybrid incompatibility genes: residues of a genomic battleground? Trends Genet. 26, 317– 325 (2010 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Miyanari, Y., Ziegler-Birling, C. & & Torres-Padilla, M.-E. Live visualization of chromatin characteristics with fluorescent TALEs. Nat. Struct. Mol. Biol. 20, 1321– 1324 (2013 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Narayanswami, S. et al. Molecular and cytological characterization of centromeres in Mus domesticus and Mus spretus Mamm. Genome 2, 186– 194 (1992 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Wong, A. K. C., Biddle, F. G. & & Rattner, J. B. The chromosomal circulation of the small and significant satellite is not saved in the genus Mus Chromosoma 99, 190– 195 (1990 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Hirano, T. Condensin-based chromosome company from germs to vertebrates. Cell 164, 847– 857 (2016 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Hoencamp, C. et al. 3D genomics throughout the tree of life exposes condensin II as a factor of architecture type. Science 372, 984– 989 (2021 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Mihola, O., Trachtulec, Z., Vlcek, C., Schimenti, J. C. & & Forejt, J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323, 373– 375 (2009 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Brideau, N. J. et al. 2 Dobzhansky-Muller genes engage to trigger hybrid lethality in Drosophila Science 314, 1292– 1295 (2006 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Phadnis, N. et al. A necessary cell cycle policy gene triggers hybrid inviability in Drosophila Science 350, 1552– 1555 (2015 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Suzuki, T. A. & & Nachman, M. W. Speciation and decreased hybrid female fertility in home mice. Evolution 69, 2468– 2481 (2015 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Sturtevant, A. H. Genetic research studies on Drosophila simulans I. Introduction. Hybrids with Drosophila melanogaster Genetics 5, 488– 500 (1920 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Chiang, T., Schultz, R. M. & & Lampson, M. A. Meiotic origins of maternal age-related aneuploidy. Biol. Reprod. 86, 1– 7 (2012 ).

    Article
    PubMed

    Google Scholar

  • Kitajima, T. S. Mechanisms of kinetochore-microtubule accessory mistakes in mammalian oocytes. Dev. Development Differ. 60, 33– 43 (2018 ).

    Article
    PubMed

    Google Scholar

  • Nagaoka, S. I., Hassold, T. J. & & Hunt, P. A. Human aneuploidy: systems and brand-new insights into an olden issue. Nat. Rev. Genet. 13, 493– 504 (2012 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Thomas, C., Cavazza, T. & & Schuh, M. Aneuploidy in human eggs: contributions of the meiotic spindle. Biochem. Soc. Trans. 49, 107– 118 (2021 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Sebestova, J., Danylevska, A., Novakova, L., Kubelka, M. & & Anger, M. Lack of reaction to unaligned chromosomes in mammalian female gametes. Cell Cycle 11, 3011– 3018 (2012 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Asakawa, T., Ishikawa, M., Shimizu, T. & & Dukelow, W. R. The chromosomal normality of in vitro-fertilized bunny oocytes. Biol. Reprod. 38, 292– 295 (1988 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Nicodemo, D. et al. Frequency of aneuploidy in in vitro-matured MII oocytes and matching very first polar bodies in 2 dairy livestock ( Bos taurus) types as identified by dual-color fluorescent in situ hybridization. Theriogenology 73, 523– 529 (2010 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Vozdová, M. et al. Frequency of aneuploidy in pig oocytes grew in vitro and of the matching very first polar bodies identified by fluorescent in situ hybridization. Theriogenology 56, 771– 776 (2001 ).

    Article
    PubMed

    Google Scholar

  • Koehler, K. E., Schrump, S. E., Cherry, J. P., Hassold, T. J. & & Hunt, P. A. Near-human aneuploidy levels in female mice with homeologous chromosomes. Curr. Biol. 16, R579– R580 (2006 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Reichmann, J. et al. Dual-spindle development in zygotes keeps adult genomes apart in early mammalian embryos. Science 361, 189– 193 (2018 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Hirota, T., Gerlich, D., Koch, B., Ellenberg, J. & & Peters, J.-M. Unique functions of condensin I and II in mitotic chromosome assembly. J. Cell Sci. 117, 6435– 6445 (2004 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Ono, T. et al. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115, 109– 121 (2003 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Ono, T., Fang, Y., Spector, D. L. & & Hirano, T. Spatial and temporal policy of condensins I and II in mitotic chromosome assembly in human cells. Mol. Biol. Cell 15, 3296– 3308 (2004 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Ono, T., Yamashita, D. & & Hirano, T. Condensin II starts sis chromatid resolution throughout S stage. J. Cell Biol. 200, 429– 441 (2013 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lee, J., Ogushi, S., Saitou, M. & & Hirano, T. Condensins I and II are necessary for building of bivalent chromosomes in mouse oocytes. Mol. Biol. Cell 22, 3465– 3477 (2011 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Houlard, M. et al. Condensin gives the longitudinal rigidness of chromosomes. Nat. Cell Biol. 17, 771– 781 (2015 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Abe, S. et al. The preliminary stage of chromosome condensation needs Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. Genes Dev. 25, 863– 874 (2011 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Choi, T. et al. Activation of p34 cdc2 protein kinase activity in mitotic and meiotic cell cycles in mouse oocytes and embryos. Development 113, 789– 795 (1991 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Davydenko, O., Schultz, R. M. & & Lampson, M. A. Increased CDK1 activity identifies the timing of kinetochore-microtubule accessories in meiosis I. J. Cell Biol. 202, 221– 229 (2013 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Yoshida, S., Kaido, M. & & Kitajima, T. S. Inherent instability of proper kinetochore-microtubule accessories throughout meiosis I in oocytes. Dev. Cell 33, 589– 602 (2015 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Pommier, Y., Nussenzweig, A., Takeda, S. & & Austin, C. Human topoisomerases and their functions in genome stability and company. Nat. Rev. Mol. Cell Biol. 23, 407– 427 (2022 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zhang, J. et al. Topoisomerase II dysfunction triggers metaphase I detain by triggering Aurora B, SAC and MPF and avoids PB1 abscission in mouse oocytes. Biol. Reprod. 106, 900– 909 (2022 ).

    Article
    PubMed

    Google Scholar

  • Li, X.-M. et al. DNA topoisomerase II is dispensable for oocyte meiotic resumption however is necessary for meiotic chromosome condensation and separation in mice. Biol. Reprod. 89, 118 (2013 ).

    Article
    PubMed

    Google Scholar

  • Arora, U. P., Charlebois, C., Lawal, R. A. & & Dumont, B. L. Population and subspecies variety at mouse centromere satellites. BMC Genom. 22, 279 (2021 ).

    Article
    CAS

    Google Scholar

  • Yamashita, D. et al. MCPH1 manages chromosome condensation and shaping as a composite modulator of condensin II. J. Cell Biol. 194, 841– 854 (2011 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Houlard, M. et al. MCPH1 hinders condensin II throughout interphase by controling its SMC2-kleisin user interface. eLife 10, e73348 (2021 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hale, D. W., Washburn, L. L. & & Eicher, E. M. Meiotic irregularities in hybrid mice of the C57BL/6J x Mus spretus cross recommend a cytogenetic basis for Haldane’s guideline of hybrid sterility. Cytogenet. Cell Genet. 63, 221– 234 (1993 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Davies, B. et al. Modifying the binding residential or commercial properties of PRDM9 partly brings back fertility throughout the types limit. Mol. Biol. Evol. 38, 5555– 5562 (2021 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Dejager, L., Libert, C. & & Montagutelli, X. Thirty years of Mus spretus: an appealing future. Trends Genet. 25, 234– 241 (2009 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Probst, A. V. et al. A strand-specific burst in transcription of pericentric satellites is needed for chromocenter development and early mouse advancement. Dev. Cell 19, 625– 638 (2010 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Burton, A. et al. Heterochromatin facility throughout early mammalian advancement is managed by pericentromeric RNA and identified by non-repressive H3K9me3. Nat. Cell Biol. 22, 767– 778 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Terakawa, T. et al. The condensin complex is a mechanochemical motor that translocates along DNA. Science 358, 672– 676 (2017 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Kong, M. et al. Human condensin I and II drive substantial ATP-dependent compaction of nucleosome-bound DNA. Mol. Cell 79, 99– 114 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Kinoshita, K., Kobayashi, T. J. & & Hirano, T. Balancing acts of 2 HEAT subunits of condensin I support vibrant assembly of chromosome axes. Dev. Cell 33, 94– 106 (2015 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Hsieh, T. Knotting of the circular duplex DNA by type II DNA topoisomerase from Drosophila melanogaster J. Biol. Chem. 258, 8413– 8420 (1983 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Haase, J., Chen, R., Bonner, M. K., Jenkins, L. M. M. & & Kelly, A. E. The TFIIH complex is needed to develop and keep mitotic chromosome structure. eLife https://doi.org/2021.11.06.467569 (2022 ).

  • Choppakatla, P. et al. Linker histone H1.8 hinders chromatin binding of condensins and DNA topoisomerase II to tune chromosome length and individualization. eLife 10, e68918 (2021 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Akera, T., Trimm, E. & & Lampson, M. A. Molecular techniques of meiotic unfaithful by self-centered centromeres. Cell 178, 1132– 1144 (2019 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Henikoff, S., Ahmad, K. & & Malik, H. S. The centromere paradox: steady inheritance with quickly developing DNA. Science 293, 1098– 1102 (2001 ).

    Article
    CAS
    PubMed

    Google Scholar

  • King, T. D. et al. Frequent losses and quick development of the condensin II complex in bugs. Mol. Biol. Evol. 36, 2195– 2204 (2019 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Phadnis, N. & & Orr, H. A. A single gene triggers both male sterility and partition distortion in Drosophila hybrids. Science 323, 376– 379 (2009 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Iwata-Otsubo, A. et al. Expanded satellite repeats magnify a discrete CENP-A nucleosome assembly website on chromosomes that drive in female meiosis. Curr. Biol. 27, 2365– 2373 (2017 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Stein, P. & & Schindler, K. Mouse oocyte microinjection, ploidy and maturation evaluation. J. Vis. Exp. https://doi.org/10.3791/2851 (2011 ).

  • Igarashi, H., Knott, J. G., Schultz, R. M. & & Williams, C. J. Alterations of PLCβ1 in mouse eggs alter calcium oscillatory habits following fertilization. Dev. Biol. 312, 321– 330 (2007 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Ostromyshenskiĭ, D. I., Kuznetsova, I. S., Golinishchev, F. N., Malikov, V. G. & & Podgornaia, O. I. Satellite DNA as a phylogenetic marker: case research study of 3 genera of the Murinae subfamily. Tsitologiia 53, 564– 571 (2011 ).

    PubMed

    Google Scholar

  • Tada, K., Susumu, H., Sakuno, T. & & Watanabe, Y. Condensin association with histone H2A forms mitotic chromosomes. Nature 474, 477– 483 (2011 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Samoshkin, A. et al. Human condensin function is necessary for centromeric chromatin assembly and appropriate sis kinetochore orientation. PLoS ONE 4, e6831 (2009 ).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Clift, D. et al. A technique for the quick and intense destruction of endogenous proteins. Cell 171, 1692– 1706 (2017 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Shintomi, K. & & Hirano, T. Guiding functions of the C-terminal domain of topoisomerase IIα advance mitotic chromosome assembly. Nat. Commun. 12, 2917 (2021 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here