Clostridioides difficile ferrosome organelles combat nutritional immunity

0
4


  • Pi, H. & & Helmann, J. D. Ferrous iron efflux systems in germs. Metallomics 9, 840– 851 (2017 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Imlay, J. A. Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395– 418 (2003 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Chandrangsu, P., Rensing, C. & & Helmann, J. D. Metal homeostasis and resistance in germs. Nat. Rev. Microbiol. 15, 338– 350 (2017 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Imlay, J. A. The mismetallation of enzymes throughout oxidative tension. J. Biol. Chem. 289, 28121– 28128 (2014 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Sheldon, J. R. & & Heinrichs, D. E. Recent advancements in comprehending the iron acquisition methods of Gram favorable pathogens. FEMS Microbiol. Rev. 39, 592– 630 (2015 ).

    Article
    PubMed

    Google Scholar

  • Sheldon, J. R., Laakso, H. A. & & Heinrichs, D. E. Iron acquisition methods of bacterial pathogens. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0010-2015 (2016 ).

  • Lessa, F. C. et al. Problem of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 825– 834 (2015 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Kelly, C. P. & & LaMont, J. T. Clostridium difficile— harder than ever. N. Engl. J. Med. 359, 1932– 1940 (2008 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Janka, J. & & O’Grady, N. P. Clostridium difficile infection: existing point of views. Curr. Opin. Crit. Care 15, 149– 153 (2009 ).

    Article
    PubMed

    Google Scholar

  • Rupnik, M., Wilcox, M. H. & & Gerding, D. N. Clostridium difficile infection: brand-new advancements in public health and pathogenesis. Nat. Rev. Microbiol. 7, 526– 536 (2009 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Palmer, L. D. & & Skaar, E. P. Transition metals and virulence in germs. Annu. Rev. Genet. 50, 67– 91 (2016 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hood, M. I. & & Skaar, E. P. Nutritional resistance: shift metals at the pathogen– host user interface. Nat. Rev. Microbiol. 10, 525– 537 (2012 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Bullen, J. J. The significance of iron in infection. Rev. Infect. Dis. 3, 1127– 1138 (1981 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Cassat, J. E. & & Skaar, E. P. Iron in infection and resistance. Cell Host Microbe 13, 509– 519 (2013 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Parrow, N. L., Fleming, R. E. & & Minnick, M. F. Sequestration and scavenging of iron in infection. Infect. Immun. 81, 3503– 3514 (2013 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Nakashige, T. G., Zhang, B., Krebs, C. & & Nolan, E. M. Human calprotectin is an iron-sequestering host-defense protein. Nat. Chem. Biol. 11, 765– 771 (2015 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Corbin, B. D. et al. Metal chelation and inhibition of bacterial development in tissue abscesses. Science 319, 962– 965 (2008 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Moschen, A. R., Adolph, T. E., Gerner, R. R., Wieser, V. & & Tilg, H. Lipocalin-2: a master arbitrator of metabolic and digestive tract swelling. Trends Endocrinol. Metab. 28, 388– 397 (2017 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Kell, D. B., Heyden, E. L. & & Pretorius, E. The biology of lactoferrin, an iron-binding protein that can assist resist germs and infections. Front. Immunol. 11, 1221 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • McCormick, A. et al. Internet formed by human neutrophils prevent development of the pathogenic mold Aspergillus fumigatus Microbes Infect. 12, 928– 936 (2010 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Urban, C. F. et al. Neutrophil extracellular traps consist of calprotectin, a cytosolic protein complex associated with host defense versus Candida albicans PLoS Pathog. 5, e1000639 (2009 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Deriu, E. et al. Probiotic germs decrease Salmonella typhimurium digestive tract colonization by completing for iron. Cell Host Microbe 14, 26– 37 (2013 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Bianchi, M., Niemiec, M. J., Siler, U., Urban, C. F. & & Reichenbach, J. Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human persistent granulomatous illness after gene treatment is calprotectin-dependent. J. Allergy Clin. Immunol. 127, 1243– 1252 e1247 (2011 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Ayling, R. M. & & Kok, K. Fecal calprotectin. Adv. Clin. Chem. 87, 161– 190 (2018 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Barbut, F. et al. Faecal lactoferrin and calprotectin in clients with Clostridium difficile infection: a case– control research study. Eur. J. Clin. Microbiol. Contaminate. Dis. 36, 2423– 2430 (2017 ).

    Article
    CAS
    PubMed

    Google Scholar

  • He, T. et al. Fecal calprotectin concentrations in cancer clients with Clostridium difficile infection. Eur. J. Clin. Microbiol. Contaminate. Dis. 37, 2341– 2346 (2018 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zackular, J. P. et al. Dietary zinc reduces and modifies the microbiota resistance to Clostridium difficile infection. Nat. Medication. 22, 1330– 1334 (2016 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Ho, T. D. & & Ellermeier, C. D. Ferric uptake regulator Fur control of putative iron acquisition systems in Clostridium difficile J. Bacteriol. 197, 2930– 2940 (2015 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Grant, C. R. et al. Unique gene clusters drive development of ferrosome organelles in germs. Nature 606, 160– 164 (2022 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • McAllister, K. N., Bouillaut, L., Kahn, J. N., Self, W. T. & & Sorg, J. A. Using CRISPR-Cas9-mediated genome modifying to create C. difficile mutants faulty in selenoproteins synthesis. Sci. Rep. 7, 14672 (2017 ).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Byrne, M. E. et al. Desulfovibrio magneticus RS-1 includes an iron- and phosphorus-rich organelle unique from its bullet-shaped magnetosomes. Proc. Natl Acad. Sci. U.S.A. 107, 12263– 12268 (2010 ).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Nitzan, O., Elias, M., Chazan, B., Raz, R. & & Saliba, W. Clostridium difficile and inflammatory bowel illness: function in pathogenesis and ramifications in treatment. World J. Gastroenterol. 19, 7577– 7585 (2013 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Sinh, P., Barrett, T. A. & & Yun, L. Clostridium difficile infection and inflammatory bowel illness: an evaluation. Gastroenterol. Res. Pract. 2011, 136064 (2011 ).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Wiskin, A. E., Fleming, B. J., Wootton, S. A. & & Beattie, R. M. Anaemia and iron shortage in kids with inflammatory bowel illness. J. Crohns Colitis 6, 687– 691 (2012 ).

    Article
    PubMed

    Google Scholar

  • Bou-Abdallah, F. The iron redox and hydrolysis chemistry of the ferritins. Biochim. Biophys. Acta Gen. Subj. 1800, 719– 731 (2010 ).

    Article
    CAS

    Google Scholar

  • Hintze, K. J. & & Theil, E. C. Cellular policy and molecular interactions of the ferritins. Cell. Mol. Life Sci. 63, 591 (2006 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Glasauer, S., Langley, S. & & Beveridge, T. J. Intracellular iron minerals in a dissimilatory iron-reducing germs. Science 295, 117– 119 (2002 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Glasauer, S. et al. Mixed-valence cytoplasmic iron granules are connected to anaerobic respiration. Appl. Environ. Microbiol. 73, 993– 996 (2007 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Välikangas, T., Suomi, T. & & Elo, L. L. A methodical assessment of normalization approaches in quantitative label-free proteomics. Brief. Bioinform. 19, 1– 11 (2018 ).

    PubMed

    Google Scholar

  • Wagner, F. R. et al. Preparing samples from entire cells utilizing focused-ion-beam milling for cryo-electron tomography. Nat. Protoc. 15, 2041– 2070 (2020 ).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Kremer, J. R., Mastronarde, D. N. & & McIntosh, J. R. Computer visualization of three-dimensional image information utilizing IMOD. J. Struct. Biol. 116, 71– 76 (1996 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Zheng, S. et al. AreTomo: an incorporated software application bundle for automated marker-free, motion-corrected cryo-electron tomographic positioning and restoration. J. Struct. Biol. X 6, 100068 (2022 ).

    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Yang, J., Norris, J. L. & & Caprioli, R. Novel vacuum steady ketone-based matrices for high spatial resolution MALDI imaging mass spectrometry. J. Mass Spectrom. 53, 1005– 1012 (2018 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here