Pi, H. & & Helmann, J. D. Ferrous iron efflux systems in germs. Metallomics 9, 840– 851 (2017 ).
Imlay, J. A. Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395– 418 (2003 ).
Chandrangsu, P., Rensing, C. & & Helmann, J. D. Metal homeostasis and resistance in germs. Nat. Rev. Microbiol. 15, 338– 350 (2017 ).
Imlay, J. A. The mismetallation of enzymes throughout oxidative tension. J. Biol. Chem. 289, 28121– 28128 (2014 ).
Sheldon, J. R. & & Heinrichs, D. E. Recent advancements in comprehending the iron acquisition methods of Gram favorable pathogens. FEMS Microbiol. Rev. 39, 592– 630 (2015 ).
Sheldon, J. R., Laakso, H. A. & & Heinrichs, D. E. Iron acquisition methods of bacterial pathogens. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0010-2015 (2016 ).
Lessa, F. C. et al. Problem of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 825– 834 (2015 ).
Kelly, C. P. & & LaMont, J. T. Clostridium difficile— harder than ever. N. Engl. J. Med. 359, 1932– 1940 (2008 ).
Janka, J. & & O’Grady, N. P. Clostridium difficile infection: existing point of views. Curr. Opin. Crit. Care 15, 149– 153 (2009 ).
Rupnik, M., Wilcox, M. H. & & Gerding, D. N. Clostridium difficile infection: brand-new advancements in public health and pathogenesis. Nat. Rev. Microbiol. 7, 526– 536 (2009 ).
Palmer, L. D. & & Skaar, E. P. Transition metals and virulence in germs. Annu. Rev. Genet. 50, 67– 91 (2016 ).
Hood, M. I. & & Skaar, E. P. Nutritional resistance: shift metals at the pathogen– host user interface. Nat. Rev. Microbiol. 10, 525– 537 (2012 ).
Bullen, J. J. The significance of iron in infection. Rev. Infect. Dis. 3, 1127– 1138 (1981 ).
Cassat, J. E. & & Skaar, E. P. Iron in infection and resistance. Cell Host Microbe 13, 509– 519 (2013 ).
Parrow, N. L., Fleming, R. E. & & Minnick, M. F. Sequestration and scavenging of iron in infection. Infect. Immun. 81, 3503– 3514 (2013 ).
Nakashige, T. G., Zhang, B., Krebs, C. & & Nolan, E. M. Human calprotectin is an iron-sequestering host-defense protein. Nat. Chem. Biol. 11, 765– 771 (2015 ).
Corbin, B. D. et al. Metal chelation and inhibition of bacterial development in tissue abscesses. Science 319, 962– 965 (2008 ).
Moschen, A. R., Adolph, T. E., Gerner, R. R., Wieser, V. & & Tilg, H. Lipocalin-2: a master arbitrator of metabolic and digestive tract swelling. Trends Endocrinol. Metab. 28, 388– 397 (2017 ).
Kell, D. B., Heyden, E. L. & & Pretorius, E. The biology of lactoferrin, an iron-binding protein that can assist resist germs and infections. Front. Immunol. 11, 1221 (2020 ).
McCormick, A. et al. Internet formed by human neutrophils prevent development of the pathogenic mold Aspergillus fumigatus Microbes Infect. 12, 928– 936 (2010 ).
Urban, C. F. et al. Neutrophil extracellular traps consist of calprotectin, a cytosolic protein complex associated with host defense versus Candida albicans PLoS Pathog. 5, e1000639 (2009 ).
Deriu, E. et al. Probiotic germs decrease Salmonella typhimurium digestive tract colonization by completing for iron. Cell Host Microbe 14, 26– 37 (2013 ).
Bianchi, M., Niemiec, M. J., Siler, U., Urban, C. F. & & Reichenbach, J. Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human persistent granulomatous illness after gene treatment is calprotectin-dependent. J. Allergy Clin. Immunol. 127, 1243– 1252 e1247 (2011 ).
Ayling, R. M. & & Kok, K. Fecal calprotectin. Adv. Clin. Chem. 87, 161– 190 (2018 ).
Barbut, F. et al. Faecal lactoferrin and calprotectin in clients with Clostridium difficile infection: a case– control research study. Eur. J. Clin. Microbiol. Contaminate. Dis. 36, 2423– 2430 (2017 ).
He, T. et al. Fecal calprotectin concentrations in cancer clients with Clostridium difficile infection. Eur. J. Clin. Microbiol. Contaminate. Dis. 37, 2341– 2346 (2018 ).
Zackular, J. P. et al. Dietary zinc reduces and modifies the microbiota resistance to Clostridium difficile infection. Nat. Medication. 22, 1330– 1334 (2016 ).
Ho, T. D. & & Ellermeier, C. D. Ferric uptake regulator Fur control of putative iron acquisition systems in Clostridium difficile J. Bacteriol. 197, 2930– 2940 (2015 ).
Grant, C. R. et al. Unique gene clusters drive development of ferrosome organelles in germs. Nature 606, 160– 164 (2022 ).
McAllister, K. N., Bouillaut, L., Kahn, J. N., Self, W. T. & & Sorg, J. A. Using CRISPR-Cas9-mediated genome modifying to create C. difficile mutants faulty in selenoproteins synthesis. Sci. Rep. 7, 14672 (2017 ).
Byrne, M. E. et al. Desulfovibrio magneticus RS-1 includes an iron- and phosphorus-rich organelle unique from its bullet-shaped magnetosomes. Proc. Natl Acad. Sci. U.S.A. 107, 12263– 12268 (2010 ).
Nitzan, O., Elias, M., Chazan, B., Raz, R. & & Saliba, W. Clostridium difficile and inflammatory bowel illness: function in pathogenesis and ramifications in treatment. World J. Gastroenterol. 19, 7577– 7585 (2013 ).
Sinh, P., Barrett, T. A. & & Yun, L. Clostridium difficile infection and inflammatory bowel illness: an evaluation. Gastroenterol. Res. Pract. 2011, 136064 (2011 ).
Wiskin, A. E., Fleming, B. J., Wootton, S. A. & & Beattie, R. M. Anaemia and iron shortage in kids with inflammatory bowel illness. J. Crohns Colitis 6, 687– 691 (2012 ).
Bou-Abdallah, F. The iron redox and hydrolysis chemistry of the ferritins. Biochim. Biophys. Acta Gen. Subj. 1800, 719– 731 (2010 ).
Hintze, K. J. & & Theil, E. C. Cellular policy and molecular interactions of the ferritins. Cell. Mol. Life Sci. 63, 591 (2006 ).
Glasauer, S., Langley, S. & & Beveridge, T. J. Intracellular iron minerals in a dissimilatory iron-reducing germs. Science 295, 117– 119 (2002 ).
Glasauer, S. et al. Mixed-valence cytoplasmic iron granules are connected to anaerobic respiration. Appl. Environ. Microbiol. 73, 993– 996 (2007 ).
Välikangas, T., Suomi, T. & & Elo, L. L. A methodical assessment of normalization approaches in quantitative label-free proteomics. Brief. Bioinform. 19, 1– 11 (2018 ).
Wagner, F. R. et al. Preparing samples from entire cells utilizing focused-ion-beam milling for cryo-electron tomography. Nat. Protoc. 15, 2041– 2070 (2020 ).
Kremer, J. R., Mastronarde, D. N. & & McIntosh, J. R. Computer visualization of three-dimensional image information utilizing IMOD. J. Struct. Biol. 116, 71– 76 (1996 ).
Zheng, S. et al. AreTomo: an incorporated software application bundle for automated marker-free, motion-corrected cryo-electron tomographic positioning and restoration. J. Struct. Biol. X 6, 100068 (2022 ).
Yang, J., Norris, J. L. & & Caprioli, R. Novel vacuum steady ketone-based matrices for high spatial resolution MALDI imaging mass spectrometry. J. Mass Spectrom. 53, 1005– 1012 (2018 ).