Aspartate all-in-one doping strategy enables efficient all-perovskite tandems

0
3


  • He, R. et al. Wide-bandgap natural– inorganic hybrid and all-inorganic perovskite solar batteries and their application in all-perovskite tandem solar batteries. Energy Environ. Sci. 14, 5723– 5759 (2021 ).

    Article
    CAS

    Google Scholar

  • He, R. et al. All-perovskite tandem 1 cm 2 cells with enhanced user interface quality. Nature 618, 80– 86 (2023 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Zhang, W. et al. Exposing essential aspects of effective narrow-bandgap blended lead-tin perovskite solar batteries through mathematical simulations and experiments. Nano Energy 96, 107078 (2022 ).

  • Li, C. et al. Low-bandgap blended tin– lead iodide perovskites with minimized methylammonium for synchronised improvement of solar battery effectiveness and stability. Nat. Energy 5, 768– 776 (2020 ).

    Article
    ADS
    CAS

    Google Scholar

  • Tong, J. et al. Provider control in Sn– Pb perovskites through 2D cation engineering for all-perovskite tandem solar batteries with enhanced effectiveness and stability. Nat. Energy 7, 642– 651 (2022 ).

    Article
    ADS
    CAS

    Google Scholar

  • Ke, W., Stoumpos, C. C. & & Kanatzidis, M. G. “Unleaded” perovskites: status quo and future potential customers of tin-based perovskite solar batteries. Adv. Mater. 31, 1803230 (2019 ).

    Article
    CAS

    Google Scholar

  • Lin, R. et al. All-perovskite tandem solar batteries with 3D/3D bilayer perovskite heterojunction. Nature 620, 994– 1000 (2023 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Yoo, J. J. et al. Effective perovskite solar batteries through enhanced provider management. Nature 590, 587– 593 (2021 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Liao, W. et al. Fabrication of effective low-bandgap perovskite solar batteries by integrating formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138, 12360– 12363 (2016 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Huang, L. et al. Effective narrow‐bandgap blended tin‐lead perovskite solar batteries through natural tin oxide doping. Adv. Mater. 35, 2301125 (2023 ).

    Article
    CAS

    Google Scholar

  • Jiang, Q. et al. Compositional texture engineering for extremely steady wide-bandgap perovskite solar batteries. Science 378, 1295– 1300 (2022 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Tong, J. et al. Provider life times of >> 1 μs in Sn-Pb perovskites allow effective all-perovskite tandem solar batteries. Science 364, 475– 479 (2019 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Lin, R. et al. All-perovskite tandem solar batteries with enhanced grain surface area passivation. Nature 603, 73– 78 (2022 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Xiao, K. et al. All-perovskite tandem solar batteries with 24.2% licensed effectiveness and location over 1 cm 2 utilizing surface-anchoring zwitterionic anti-oxidant. Nat. Energy 5, 870– 880 (2020 ).

    Article
    ADS

    Google Scholar

  • Wang, Z. et al. Reduced stage partition for triple-junction perovskite solar batteries. Nature 618, 74– 79 (2023 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Chen, H. et al. Controling surface area capacity makes the most of voltage in all-perovskite tandems. Nature 613, 676– 681 (2023 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Saidaminov, M. I. et al. Suppression of atomic jobs through incorporation of isovalent little ions to increase the stability of halide perovskite solar batteries in ambient air. Nat. Energy 3, 648– 654 (2018 ).

    Article
    ADS
    CAS

    Google Scholar

  • Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & & Huang, J. Imperfections and their passivation in halide perovskite solar batteries. Chem. Soc. Rev. 48, 3842– 3867 (2019 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Liu, C. et al. Extremely effective quasi‐2D green perovskite light‐emitting diodes with bifunctional amino acid. Adv. Opt. Mater. 10, 2200276 (2022 ).

    Article
    CAS

    Google Scholar

  • Xu, J. et al. Triple-halide wide-band space perovskites with reduced stage partition for effective tandems. Science 367, 1097– 1104 (2020 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Li, G. et al. Ionic liquid supporting high‐efficiency tin halide perovskite solar batteries. Adv. Energy Mater. 11, 2101539 (2021 ).

    Article
    CAS

    Google Scholar

  • Zheng, X. et al. Quantum dots supply bulk- and surface-passivation representatives for steady and effective perovskite solar batteries. Joule 3, 1963– 1976 (2019 ).

    Article
    CAS

    Google Scholar

  • Liu, F. et al. Is Excess PbI 2 helpful for perovskite solar battery efficiency? Adv. Energy Mater. 6, 1502206 (2016 ).

    Article
    ADS

    Google Scholar

  • Jiang, Q. et al. Planar-structure perovskite solar batteries with effectiveness beyond 21 %. Adv. Mater. 29, 1703852 (2017 ).

    Article

    Google Scholar

  • Ke, W. et al. Using lead thiocyanate additive to decrease the hysteresis and enhance the fill aspect of planar perovskite solar batteries. Adv. Mater. 28, 5214– 5221 (2016 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Tumen‐Ulzii, G. et al. Destructive result of unreacted PbI 2 on the long‐term stability of perovskite solar batteries. Adv. Mater. 32, 1905035 (2020 ).

    Article

    Google Scholar

  • Hu, S. et al. Enhanced provider extraction at user interfaces for 23.6% effective tin– lead perovskite solar batteries. Energy Environ. Sci. 15, 2096– 2107 (2022 ).

    Article
    CAS

    Google Scholar

  • Yokoyama, T. et al. Conquering short-circuit in lead-free CH 3 NH 3 SnI 3 perovskite solar batteries through kinetically managed gas– strong response movie fabrication procedure. J. Phys. Chem. Lett. 7, 776– 782 (2016 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Li, P. et al. Ligand engineering in tin-based perovskite solar batteries. Nanomicro Lett. 15, 167 (2023 ).

    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Shao, W. et al. Modulation of nucleation and formation in PbI 2 movies promoting preferential perovskite orientation development for effective solar batteries. Energy Environ. Sci. 16, 252– 264 (2023 ).

    Article
    CAS

    Google Scholar

  • Ye, F. et al. Functions of MACl in sequentially transferred bromine-free perovskite absorbers for effective solar batteries. Adv. Mater. 33, 2007126 (2021 ).

    Article
    CAS

    Google Scholar

  • Liu, Y. et al. A generic lanthanum doping technique allowing effective lead halide perovskite luminescence for backlights. Sci. Bull. 68, 1017– 1026 (2023 ).

    Article
    CAS

    Google Scholar

  • Lee, J.-W. et al. Formamidinium and cesium hybridization for image- and moisture-stable perovskite solar battery. Adv. Energy Mater. 5, 1501310 (2015 ).

    Article

    Google Scholar

  • Liao, Y. et al. Extremely oriented low-dimensional tin halide perovskites with improved stability and photovoltaic efficiency. J. Am. Chem. Soc. 139, 6693– 6699 (2017 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Glowienka, D. & & Galagan, Y. Light strength analysis of photovoltaic criteria for perovskite solar batteries. Adv. Mater. 34, 2105920 (2022 ).

    Article
    CAS

    Google Scholar

  • Huang, Z., Hu, X., Liu, C., Tan, L. & & Chen, Y. Nucleation and formation control through polyurethane to improve the bendability of perovskite solar batteries with outstanding gadget efficiency. Adv. Funct. Mater. 27, 1703061 (2017 ).

    Article

    Google Scholar

  • Kapil, G. et al. Tin‐lead perovskite made through ethylenediamine interlayer guides to the solar battery effectiveness of 21.74%. Adv. Energy Mater. 11, 2101069 (2021 ).

    Article
    ADS
    CAS

    Google Scholar

  • Kuan, C. H. et al. Dopant‐free pyrrolopyrrole‐based (PPr) polymeric hole‐transporting products for effective tin‐based perovskite solar batteries with stability over 6000 h. Adv. Mater. 35, 2300681 (2023 ).

    Article
    CAS

    Google Scholar

  • Wang, J. et al. Carbazole-based hole transportation polymer for methylammonium-free tin– lead perovskite solar batteries with improved effectiveness and stability. ACS Energy Lett. 7, 3353– 3361 (2022 ).

    Article
    CAS

    Google Scholar

  • Clark, S. J. et al. Concepts approaches utilizing CASTEP. Z. Kristallogr. Cryst. Mater. 220, 567– 570 (2005 ).

    Article
    CAS

    Google Scholar

  • Grimme, S. Semiempirical GGA-type density practical built with a long-range dispersion correction. J. Comput. Chem. 27, 1787– 1799 (2006 ).

    Article
    CAS
    PubMed

    Google Scholar

  • Kresse, G. & & Hafner, J. Ab initio molecular characteristics for liquid metals. Phys. Rev. B 47, 558– 561 (1993 ).

    Article
    ADS
    CAS

    Google Scholar

  • Kresse, G. & & Furthmüller, J. Efficient iterative plans for ab initio total-energy computations utilizing a plane-wave basis set. Phys. Rev. B 54, 11169– 11186 (1996 ).

    Article
    ADS
    CAS

    Google Scholar

  • Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953– 17979 (1994 ).

    Article
    ADS

    Google Scholar

  • Kresse, G. & & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758– 1775 (1999 ).

    Article
    ADS
    CAS

    Google Scholar

  • Perdew, J. P., Burke, K. & & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865– 3868 (1996 ).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Grimme, S., Antony, J., Ehrlich, S. & & Krieg, H. A precise and constant ab initio parametrization of density practical dispersion correction (DFT-D) for the 94 aspects H-Pu. J. Chem. Phys. 132, 154104 (2010 ).

    Article
    ADS
    PubMed

    Google Scholar

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here