He, R. et al. Wide-bandgap natural– inorganic hybrid and all-inorganic perovskite solar batteries and their application in all-perovskite tandem solar batteries. Energy Environ. Sci. 14, 5723– 5759 (2021 ).
He, R. et al. All-perovskite tandem 1 cm 2 cells with enhanced user interface quality. Nature 618, 80– 86 (2023 ).
Zhang, W. et al. Exposing essential aspects of effective narrow-bandgap blended lead-tin perovskite solar batteries through mathematical simulations and experiments. Nano Energy 96, 107078 (2022 ).
Li, C. et al. Low-bandgap blended tin– lead iodide perovskites with minimized methylammonium for synchronised improvement of solar battery effectiveness and stability. Nat. Energy 5, 768– 776 (2020 ).
Tong, J. et al. Provider control in Sn– Pb perovskites through 2D cation engineering for all-perovskite tandem solar batteries with enhanced effectiveness and stability. Nat. Energy 7, 642– 651 (2022 ).
Ke, W., Stoumpos, C. C. & & Kanatzidis, M. G. “Unleaded” perovskites: status quo and future potential customers of tin-based perovskite solar batteries. Adv. Mater. 31, 1803230 (2019 ).
Lin, R. et al. All-perovskite tandem solar batteries with 3D/3D bilayer perovskite heterojunction. Nature 620, 994– 1000 (2023 ).
Yoo, J. J. et al. Effective perovskite solar batteries through enhanced provider management. Nature 590, 587– 593 (2021 ).
Liao, W. et al. Fabrication of effective low-bandgap perovskite solar batteries by integrating formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138, 12360– 12363 (2016 ).
Huang, L. et al. Effective narrow‐bandgap blended tin‐lead perovskite solar batteries through natural tin oxide doping. Adv. Mater. 35, 2301125 (2023 ).
Jiang, Q. et al. Compositional texture engineering for extremely steady wide-bandgap perovskite solar batteries. Science 378, 1295– 1300 (2022 ).
Tong, J. et al. Provider life times of >> 1 μs in Sn-Pb perovskites allow effective all-perovskite tandem solar batteries. Science 364, 475– 479 (2019 ).
Lin, R. et al. All-perovskite tandem solar batteries with enhanced grain surface area passivation. Nature 603, 73– 78 (2022 ).
Xiao, K. et al. All-perovskite tandem solar batteries with 24.2% licensed effectiveness and location over 1 cm 2 utilizing surface-anchoring zwitterionic anti-oxidant. Nat. Energy 5, 870– 880 (2020 ).
Wang, Z. et al. Reduced stage partition for triple-junction perovskite solar batteries. Nature 618, 74– 79 (2023 ).
Chen, H. et al. Controling surface area capacity makes the most of voltage in all-perovskite tandems. Nature 613, 676– 681 (2023 ).
Saidaminov, M. I. et al. Suppression of atomic jobs through incorporation of isovalent little ions to increase the stability of halide perovskite solar batteries in ambient air. Nat. Energy 3, 648– 654 (2018 ).
Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & & Huang, J. Imperfections and their passivation in halide perovskite solar batteries. Chem. Soc. Rev. 48, 3842– 3867 (2019 ).
Liu, C. et al. Extremely effective quasi‐2D green perovskite light‐emitting diodes with bifunctional amino acid. Adv. Opt. Mater. 10, 2200276 (2022 ).
Xu, J. et al. Triple-halide wide-band space perovskites with reduced stage partition for effective tandems. Science 367, 1097– 1104 (2020 ).
Li, G. et al. Ionic liquid supporting high‐efficiency tin halide perovskite solar batteries. Adv. Energy Mater. 11, 2101539 (2021 ).
Zheng, X. et al. Quantum dots supply bulk- and surface-passivation representatives for steady and effective perovskite solar batteries. Joule 3, 1963– 1976 (2019 ).
Liu, F. et al. Is Excess PbI 2 helpful for perovskite solar battery efficiency? Adv. Energy Mater. 6, 1502206 (2016 ).
Jiang, Q. et al. Planar-structure perovskite solar batteries with effectiveness beyond 21 %. Adv. Mater. 29, 1703852 (2017 ).
Ke, W. et al. Using lead thiocyanate additive to decrease the hysteresis and enhance the fill aspect of planar perovskite solar batteries. Adv. Mater. 28, 5214– 5221 (2016 ).
Tumen‐Ulzii, G. et al. Destructive result of unreacted PbI 2 on the long‐term stability of perovskite solar batteries. Adv. Mater. 32, 1905035 (2020 ).
Hu, S. et al. Enhanced provider extraction at user interfaces for 23.6% effective tin– lead perovskite solar batteries. Energy Environ. Sci. 15, 2096– 2107 (2022 ).
Yokoyama, T. et al. Conquering short-circuit in lead-free CH 3 NH 3 SnI 3 perovskite solar batteries through kinetically managed gas– strong response movie fabrication procedure. J. Phys. Chem. Lett. 7, 776– 782 (2016 ).
Li, P. et al. Ligand engineering in tin-based perovskite solar batteries. Nanomicro Lett. 15, 167 (2023 ).
Shao, W. et al. Modulation of nucleation and formation in PbI 2 movies promoting preferential perovskite orientation development for effective solar batteries. Energy Environ. Sci. 16, 252– 264 (2023 ).
Ye, F. et al. Functions of MACl in sequentially transferred bromine-free perovskite absorbers for effective solar batteries. Adv. Mater. 33, 2007126 (2021 ).
Liu, Y. et al. A generic lanthanum doping technique allowing effective lead halide perovskite luminescence for backlights. Sci. Bull. 68, 1017– 1026 (2023 ).
Lee, J.-W. et al. Formamidinium and cesium hybridization for image- and moisture-stable perovskite solar battery. Adv. Energy Mater. 5, 1501310 (2015 ).
Liao, Y. et al. Extremely oriented low-dimensional tin halide perovskites with improved stability and photovoltaic efficiency. J. Am. Chem. Soc. 139, 6693– 6699 (2017 ).
Glowienka, D. & & Galagan, Y. Light strength analysis of photovoltaic criteria for perovskite solar batteries. Adv. Mater. 34, 2105920 (2022 ).
Huang, Z., Hu, X., Liu, C., Tan, L. & & Chen, Y. Nucleation and formation control through polyurethane to improve the bendability of perovskite solar batteries with outstanding gadget efficiency. Adv. Funct. Mater. 27, 1703061 (2017 ).
Kapil, G. et al. Tin‐lead perovskite made through ethylenediamine interlayer guides to the solar battery effectiveness of 21.74%. Adv. Energy Mater. 11, 2101069 (2021 ).
Kuan, C. H. et al. Dopant‐free pyrrolopyrrole‐based (PPr) polymeric hole‐transporting products for effective tin‐based perovskite solar batteries with stability over 6000 h. Adv. Mater. 35, 2300681 (2023 ).
Wang, J. et al. Carbazole-based hole transportation polymer for methylammonium-free tin– lead perovskite solar batteries with improved effectiveness and stability. ACS Energy Lett. 7, 3353– 3361 (2022 ).
Clark, S. J. et al. Concepts approaches utilizing CASTEP. Z. Kristallogr. Cryst. Mater. 220, 567– 570 (2005 ).
Grimme, S. Semiempirical GGA-type density practical built with a long-range dispersion correction. J. Comput. Chem. 27, 1787– 1799 (2006 ).
Kresse, G. & & Hafner, J. Ab initio molecular characteristics for liquid metals. Phys. Rev. B 47, 558– 561 (1993 ).
Kresse, G. & & Furthmüller, J. Efficient iterative plans for ab initio total-energy computations utilizing a plane-wave basis set. Phys. Rev. B 54, 11169– 11186 (1996 ).
Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953– 17979 (1994 ).
Kresse, G. & & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758– 1775 (1999 ).
Perdew, J. P., Burke, K. & & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865– 3868 (1996 ).
Grimme, S., Antony, J., Ehrlich, S. & & Krieg, H. A precise and constant ab initio parametrization of density practical dispersion correction (DFT-D) for the 94 aspects H-Pu. J. Chem. Phys. 132, 154104 (2010 ).