Wittmann, C. et al. Strange compact outstanding systems in the Fornax cluster. Mon. Not. R. Astron. Soc. 459,
4450– 4466( 2016). (* ).
Mon. Not. R. Astron. Soc. 504 ,
3580– 3609( 2021).
812, 34 (2015 ).
250, 17 (2020 ).
423, 519– 521 (2003 ).
414,
3699– 3710( 2011). &
537, A3 (2012 ). .(* ).
,
461 — 478( 2008). & .
, A102 (2016 ).
,
3615– 3626( 2015).
(* ). (* ). Mieske, S. et al. On main great voids in ultra-compact dwarf galaxies.
Dumont, A. et al. A population of luminescent globular clusters and removed nuclei with raised mass to light ratios around NGC 5128. Astrophys. J. 929
Seth, A. C. et al. A supermassive great void in an ultra-compact dwarf galaxy. Nature
Ahn, C. P. et al. The great void in the most huge ultra-compact dwarf galaxy M59-UCD3. Astrophys. J.
Afanasiev, A. V. et al. A 3.5 million solar masses great void in the centre of the ultracompact dwarf galaxy fornax UCD3. Mon. Not. R. Astron. Soc.
& . Neumayer, N., Seth, A. & Böker, T. Nuclear star clusters.
.(* )Bekki, K., Couch, W. J., Drinkwater, M. J. & Shioya, Y. Galaxy threshing and the origin of ultra-compact dwarf galaxies in the Fornax cluster. Mon. Not. R. Astron.
Soc.
344, 399– 411 (2003).
Pfeffer, J. & Baumgardt, H. Ultra-compact dwarf galaxy development by tidal removing of nucleated dwarf galaxies. Mon. Not. R. Astron. Soc.
433, 1997– 2005 (2013).
Mon. Not. R. Astron. Soc. 456 ,
1030– 1048( 2016). (* ). .
809, L21 (2015 ). .
, L11 (2018). (* & ). (* ). Peñarrubia, J., Navarro, J. F., McConnachie, A. W. & Martin, N. F. The signature of stellar tides in regional group dwarf spheroidals. Astrophys.
J.
van Dokkum, P. G. et al. Forty-seven Milky Way-sized, incredibly scattered galaxies in the Coma Cluster. Astrophys. J. Lett.
Carleton, T. et al. The development of ultra-diffuse galaxies in cored dark matter haloes through tidal removing and heating. Mon. Not. R. Astron. Soc.
. Zhang, H.-X. et al. The Next Generation Virgo Cluster Survey. VI. The kinematics of ultra-compact overshadows and globular clusters in M87.
. (* )Ko, Y. et al. The Next Generation Virgo Cluster Survey. XXXIII. Outstanding population gradients in the Virgo Cluster core globular cluster system. Astrophys. J.
Mihos, J. C. et al. The Burrell Schmidt deep Virgo study: tidal particles, galaxy halos, and scattered intracluster light in the Virgo Cluster. Astrophys. J. 834, 16 (2017 ).
Koch, A. et al. Threshing in action: the tidal disturbance of a dwarf galaxy by the Hydra I Cluster. Astrophys. J. Lett. 755, L13 (2012 ).
Lim, S. et al. The Next Generation Virgo Cluster Survey. XXX. Ultra-diffuse galaxies and their globular cluster systems. Astrophys. J. 899, 69 (2020 ).
Pfeffer, J., Griffen, B. F., Baumgardt, H. & & Hilker, M. Contribution of removed nuclear clusters to globular cluster and ultra-compact dwarf galaxy populations. Mon. Not. R. Astron. Soc. 444,
3670– 3683( 2014).
Gilmore, G. et al. The observed homes of dark matter on little spatial scales. Astrophys. J. 663, 948– 959 (2007 ).
Peñarrubia, J., Navarro, J. F. & & McConnachie, A. W. The tidal advancement of regional group dwarf spheroidals. Astrophys. J. 673, 226– 240 (2008 ).
Mon. Not. R. Astron. Soc. 449 ,
L46– L50( 2015).
(* ).
Mon. Not. R. Astron. Soc.
494 ,
1848– 1858( 2020). (* ). .
Astrophys. J. 904 , 114 (2020 ).
Astrophys. J. 935 , 160 (2022 ).
552, L105– L108 (2001 ).
,
617– 632( 2016).
(* ). .
6(* )L ⊙ and contrasts with galaxy development designs. Astrophys. J.
Zhang, H.-X. et al. Outstanding population homes of ultra-compact overshadows in M87: a mass-metallicity connection linking low-metallicity compact ellipticals and globular clusters. Astrophys. J.
Strader, J. et al. Wide-field accuracy kinematics of the M87 globular cluster system. Astrophys. J. Suppl. Ser. 197 , 33 (2011 ).
Romanowsky, A. J. et al. The continuous assembly of a main cluster galaxy: phase-space bases in the halo of M87. Astrophys. J.
Longobardi, A., Arnaboldi, M., Gerhard, O. & & Mihos, J. C. The accumulation of the cD halo of M 87: proof for accretion in the last Gyr. Astron. Astrophys.
Ferrarese, L. et al. The Next Generation Virgo Cluster Survey. XIII. The luminosity and mass function of galaxies in the core of the Virgo Cluster and the contribution from interrupted satellites. Astrophys. J.
Voggel, K. T. et al. The effect of removed nuclei on the supermassive great void number density in the regional universe. Astrophys. J.
Li, C. et al. A discrete chemo-dynamical design of M87’s globular clusters: kinematics encompassing
492,
2775– 2795( 2020).
(* ). .
890, 128 (2020 ). .(* ).
. Côté, P. et al. The ACS Virgo Cluster Survey. VIII. The nuclei of early-type galaxies. Astrophys.
J. Suppl. Ser. 165
Astrophys. J. Suppl. Ser.(* )200 , 4( 2012).
(2003 ). Blakeslee, J. P. et al. The ACS Fornax Cluster Survey. V. Measurement and recalibration of surface area brightness changes and an accurate worth of the Fornax– Virgo relative range. Astrophys. J. 694
Guérou, A. et al. The Next Generation Virgo Cluster Survey. XII. Outstanding populations and kinematics of compact, low-mass early-type galaxies from Gemini GMOS-IFU spectroscopy. Astrophys. J. 804
Côté, P. et al. The ACS Virgo Cluster Survey. I. Introduction to the study. Astrophys. J. Suppl. Ser. 153
Ford, H. C. et al. Advanced cam for the Hubble Space Telescope. https://doi.org/10.1117/12.459890 Proc. SPIE
(1998 ). Paudel, S., Lisker, T. & & Janz, J. Nuclei of early-type dwarf galaxies: are they progenitors of ultra-compact dwarf galaxies? Astrophys. J. Lett. 724
Mihos, J. C. et al. The range and dynamical history of the virgo cluster ultradiffuse galaxy vcc 615. Astrophys. J. 924
Toloba, E. et al. The Next Generation Virgo Cluster Survey (NGVS). XXXV. Kinematical ideas of overly-massive dark matter halos in numerous ultra-diffuse galaxies in the Virgo Cluster. Astrophys. J. 951
878, 18 (2019 ). https://doi.org/10.1117/12.324464
Peng, C. Y. et al. In-depth structural decay of galaxy images. Astron. J
Peng, C. Y. et al. In-depth decay of galaxy images. II. Beyond axisymmetric designs. Astron. J
King, I. The structure of star clusters. I. an empirical density law. Astron. J
67, 471 (1962 ).
Vol. 1 (Observatorio Astronomico, 1968). Bradley, L. et al. astropy/photutils: 1.0.0. Zenodo (2020 ).
, 461– 464 (1978 ).
172, 615– 633 (2007 ).
227, 12 (2016 ).
https://doi.org/10.5281/zenodo.4044744 Akhlaghi, M. & & Ichikawa, T. Noise-based detection and division of ambiguous things.
Astrophys. J. Suppl. Ser. 220 , 1 (2015 ).
117, 393– 404 (1996 ).
, 127– 146 (2002 ).
Mon. Not. R. Astron. Soc. 346 ,
L11– L15( 2003).
(* ).
Cen analog embedded in an excellent stream. Astrophys. J. Lett. 812, L10 (2015 ).
Hook, I. M. et al. The Gemini-North multi-object spectrograph: efficiency in imaging, long-Slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pac. 116
Prochaska, J. X. et al. PypeIt: the Python spectroscopic information decrease pipeline. J. Open Source Softw. 5 , 2308 (2020 ). Cappellari, M. & & Emsellem, E. Parametric healing of line-of-sight speed circulations from absorption-line spectra of galaxies by means of punished possibility.
Cappellari, M. Improving the complete spectrum fitting technique: precise convolution with Gauss– Hermite functions. Mon. Not. R. Astron. Soc. 466
Stetson, P. B. DAOPHOT: a computer system program for crowded-field outstanding photometry. Publ. Astron. Soc. Pac.
Jordán, A. et al. The ACS Virgo Cluster Survey. II. information decrease treatments. Astrophys. J. Suppl. Ser.
154, 509– 517 (2004 ).