An evolutionary continuum from nucleated dwarf galaxies to star clusters

0
6


  • Wittmann, C. et al. Strange compact outstanding systems in the Fornax cluster. Mon. Not. R. Astron. Soc. 459,
    4450– 4466( 2016). (* ).

    Article.ADS
    Google Scholar
    Saifollahi, T. et al. Ultra-compact overshadows beyond the centre of the Fornax galaxy cluster: tips of UCD development in low-density environments.

  • Mon. Not. R. Astron. Soc. 504 ,
    3580– 3609( 2021).

    Article (* ). CAS.ADS Liu, C. et al. The Next Generation Virgo Cluster Survey. X. Properties of ultra-compact overshadows in the M60, m87, and m49 areas.
    Google Scholar
    Astrophys. J.

  • 812, 34 (2015 ).

    Article
    ADS Liu, C. et al. The Next Generation Virgo Cluster Survey. XXXIV. Ultracompact dwarf galaxies in the Virgo Cluster.
    Google Scholar
    Astrophys. J. Suppl. Ser.

  • 250, 17 (2020 ).

    Article
    ADS Drinkwater, M. J. et al. A class of compact dwarf galaxies from disruptive procedures in galaxy clusters.
    Google Scholar
    Nature

  • 423, 519– 521 (2003 ).

    Article
    CAS
    PubMed
    ADS Misgeld, I. & & Hilker, M. Families of dynamically hot outstanding systems over 10 orders of magnitude in mass.
    Google Scholar
    Mon. Not. R. Astron. Soc.

  • 414,
    3699– 3710( 2011).
    &

    Article.ADS Mieske, S., Hilker, M. & Misgeld, I. The particular frequencies of ultra-compact dwarf galaxies.
    Google Scholar
    Astron. Astrophys.

  • 537, A3 (2012 ). .(* ).

    Article Evstigneeva, E. A. et al. Structural homes of ultra-compact dwarf galaxies in the Fornax and Virgo Clusters.ADS Astron. J
    Google Scholar
    136

  • ,
    461 — 478( 2008). & .

    Article Voggel, K., Hilker, M. & Richtler, T. Globular cluster clustering and tidal functions around ultra-compact dwarf galaxies in the halo of NGC 1399. ADS Astron. Astrophys.
    Google Scholar
    586

  • , A102 (2016 ).

    Article Norris, M. A. et al. A prolonged star development history in an ultra-compact dwarf. ADS Mon. Not. R. Astron. Soc.
    Google Scholar
    451

  • ,
    3615– 3626( 2015).
    (* ). (* ). Mieske, S. et al. On main great voids in ultra-compact dwarf galaxies.

    Article Astron. Astrophys.
    CAS 558ADS, A14 (2013 ).
    Google Scholar
    .

  • Dumont, A. et al. A population of luminescent globular clusters and removed nuclei with raised mass to light ratios around NGC 5128. Astrophys. J. 929

    Article, 147 (2022 ).
    Google Scholar


  • Seth, A. C. et al. A supermassive great void in an ultra-compact dwarf galaxy. Nature

    Article 513ADS, 398– 400 (2014 ).
    Google Scholar



  • Article Ahn, C. P. et al. Detection of supermassive great voids in 2 Virgo ultra-compact dwarf galaxies. CAS Astrophys. J.PubMed 839ADS, 72 (2017 ).
    Google Scholar


  • Ahn, C. P. et al. The great void in the most huge ultra-compact dwarf galaxy M59-UCD3. Astrophys. J.

    Article 858ADS, 102 (2018 ).
    Google Scholar


  • Afanasiev, A. V. et al. A 3.5 million solar masses great void in the centre of the ultracompact dwarf galaxy fornax UCD3. Mon. Not. R. Astron. Soc.

    Article 477ADS,
    4856– 4865( 2018).

    Google Scholar

  • & . Neumayer, N., Seth, A. & Böker, T. Nuclear star clusters.

    Article Astron. Astrophys.
    Rev.CAS 28ADS, 4( 2020).
    Google Scholar
    (* & ).

  • .(* )Bekki, K., Couch, W. J., Drinkwater, M. J. & Shioya, Y. Galaxy threshing and the origin of ultra-compact dwarf galaxies in the Fornax cluster. Mon. Not. R. Astron.
    Soc.
    344, 399– 411 (2003).

    Article.ADS
    Google Scholar

  • Pfeffer, J. & Baumgardt, H. Ultra-compact dwarf galaxy development by tidal removing of nucleated dwarf galaxies. Mon. Not. R. Astron. Soc.
    433, 1997– 2005 (2013).

    Article.ADS(* ).
    Google Scholar
    Wellons, S. et al. The varied evolutionary courses of simulated high-z huge, compact galaxies to z = 0.

  • Mon. Not. R. Astron. Soc. 456 ,
    1030– 1048( 2016). (* ).
    .

    Article (* ).ADS Mihos, J. C. et al. Galaxies at the extremes: ultra-diffuse galaxies in the Virgo Cluster.
    Google Scholar
    Astrophys. J. Lett
    .

  • 809, L21 (2015 ). .

    Article.CAS Bennet, P. et al. Proof for ultra-diffuse galaxy “development” through galaxy interactions.ADS Astrophys. J. Lett
    .

    Google Scholar
    866

  • , L11 (2018). (* & ). (* ). Peñarrubia, J., Navarro, J. F., McConnachie, A. W. & Martin, N. F. The signature of stellar tides in regional group dwarf spheroidals. Astrophys.
    J.

    Article 698ADS, 222– 232 (2009 ).
    Google Scholar
    .

  • van Dokkum, P. G. et al. Forty-seven Milky Way-sized, incredibly scattered galaxies in the Coma Cluster. Astrophys. J. Lett.

    Article 798ADS, L45 (2015 ).
    Google Scholar


  • Carleton, T. et al. The development of ultra-diffuse galaxies in cored dark matter haloes through tidal removing and heating. Mon. Not. R. Astron. Soc.

    Article 485ADS,
    382– 395( 2019).

    Google Scholar

  • . Zhang, H.-X. et al. The Next Generation Virgo Cluster Survey. VI. The kinematics of ultra-compact overshadows and globular clusters in M87.

    Article Astrophys.
    J.ADS 802
    Google Scholar
    , 30 (2015).

  • . (* )Ko, Y. et al. The Next Generation Virgo Cluster Survey. XXXIII. Outstanding population gradients in the Virgo Cluster core globular cluster system. Astrophys. J.

    Article 931CAS, 120 (2022 ). ADS.
    Google Scholar
    (* ).

  • Mihos, J. C. et al. The Burrell Schmidt deep Virgo study: tidal particles, galaxy halos, and scattered intracluster light in the Virgo Cluster. Astrophys. J. 834, 16 (2017 ).

    Article
    ADS

    Google Scholar

  • Koch, A. et al. Threshing in action: the tidal disturbance of a dwarf galaxy by the Hydra I Cluster. Astrophys. J. Lett. 755, L13 (2012 ).

    Article
    ADS

    Google Scholar

  • Lim, S. et al. The Next Generation Virgo Cluster Survey. XXX. Ultra-diffuse galaxies and their globular cluster systems. Astrophys. J. 899, 69 (2020 ).

    Article
    ADS

    Google Scholar

  • Pfeffer, J., Griffen, B. F., Baumgardt, H. & & Hilker, M. Contribution of removed nuclear clusters to globular cluster and ultra-compact dwarf galaxy populations. Mon. Not. R. Astron. Soc. 444,
    3670– 3683( 2014).

    Article
    ADS (* ).
    Google Scholar
    .

  • Gilmore, G. et al. The observed homes of dark matter on little spatial scales. Astrophys. J. 663, 948– 959 (2007 ).

    Article
    ADS

    Google Scholar

  • Peñarrubia, J., Navarro, J. F. & & McConnachie, A. W. The tidal advancement of regional group dwarf spheroidals. Astrophys. J. 673, 226– 240 (2008 ).

    Article
    CAS
    ADS

    Google Scholar
    Errani, R., Penarrubia, J. & & Tormen, G. Constraining the circulation of dark matter in dwarf spheroidal galaxies with outstanding tidal streams.

  • Mon. Not. R. Astron. Soc. 449 ,
    L46– L50( 2015).
    (* ).

    Article.ADS
    Google Scholar
    Sales, L. V. et al. The development of ultradiffuse galaxies in clusters.

  • Mon. Not. R. Astron. Soc.
    494 ,
    1848– 1858( 2020). (* ).
    .

    ArticleADS
    Google Scholar
    Montes, M. et al. The galaxy “missing out on dark matter” NGC 1052-DF4 is going through tidal disturbance.

  • Astrophys. J. 904 , 114 (2020 ).

    Article
    CAS
    ADS

    Google Scholar
    Keim, M. A. et al. Tidal distortions in NGC1052-DF2 and NGC1052-DF4: independent proof for an absence of dark matter.

  • Astrophys. J. 935 , 160 (2022 ).

    Article
    CAS
    ADS Bekki, K., Couch, W. J. & & Drinkwater, M. J. Galaxy threshing and the development of ultra-compact dwarf galaxies.
    Google Scholar
    Astrophys. J. Lett.

  • 552, L105– L108 (2001 ).

    Article
    CAS Janz, J. et al. The AIMSS task – III. The outstanding populations of compact outstanding systems. ADS Mon. Not. R. Astron. Soc.
    Google Scholar
    456

  • ,
    617– 632( 2016).
    (* ). .

    Article Roediger, J. C. et al. The Next Generation Virgo Cluster Survey. XXIV. The red series toADS
    Google Scholar
    10

  • 6(* )L and contrasts with galaxy development designs. Astrophys. J.

    Article 836ADS, 120 (2017 ).
    Google Scholar


  • Zhang, H.-X. et al. Outstanding population homes of ultra-compact overshadows in M87: a mass-metallicity connection linking low-metallicity compact ellipticals and globular clusters. Astrophys. J.

    Article 858CAS, 37 (2018 ).ADS

    Google Scholar

  • Strader, J. et al. Wide-field accuracy kinematics of the M87 globular cluster system. Astrophys. J. Suppl. Ser. 197 , 33 (2011 ).


    Romanowsky, A. J. et al. The continuous assembly of a main cluster galaxy: phase-space bases in the halo of M87. Astrophys. J.

    Article 748ADS, 29 (2012 ).
    Google Scholar


  • Longobardi, A., Arnaboldi, M., Gerhard, O. & & Mihos, J. C. The accumulation of the cD halo of M 87: proof for accretion in the last Gyr. Astron. Astrophys.

    Article 579ADS, L3 (2015 ).
    Google Scholar


  • Ferrarese, L. et al. The Next Generation Virgo Cluster Survey. XIII. The luminosity and mass function of galaxies in the core of the Virgo Cluster and the contribution from interrupted satellites. Astrophys. J.

    Article 824ADS, 10 (2016 ).
    Google Scholar


  • Voggel, K. T. et al. The effect of removed nuclei on the supermassive great void number density in the regional universe. Astrophys. J.

    Article 871ADS, 159 (2019 ).
    Google Scholar



  • Li, C. et al. A discrete chemo-dynamical design of M87’s globular clusters: kinematics encompassing

    ArticleADS 400 kpc.
    Google Scholar
    Mon. Not. R. Astron. Soc.

  • 492,
    2775– 2795( 2020).
    (* ). .

    ArticleADS Ferrarese, L. et al. The Next Generation Virgo Cluster Survey. XIV. The discovery of low-mass galaxies and a brand-new galaxy brochure in the core of the Virgo Cluster.
    Google Scholar
    Astrophys. J.

  • 890, 128 (2020 ). .(* ).

    Article Jordán, A. et al. The ACS Virgo Cluster Survey XVI. Choice treatment and brochures of globular cluster prospects.CAS Astrophys. J. Suppl.
    Ser.
    ADS 180
    Google Scholar
    , 54– 66 (2009).

  • . Côté, P. et al. The ACS Virgo Cluster Survey. VIII. The nuclei of early-type galaxies. Astrophys.
    J. Suppl. Ser.
    165

    Article, 57– 94( 2006).CASADS
    Google Scholar
    (* )Ferrarese, L. et al. The Next Generation Virgo Cluster Survey. I. Introduction to the study.

  • Astrophys. J. Suppl. Ser.(* )200 , 4( 2012).

    ArticleADS Boulade, O. et al. MegaCam: the brand-new Canada-France-Hawaii Telescope wide-field imaging cam.
    Google Scholar
    Proc. SPIE

  • (2003 ). Blakeslee, J. P. et al. The ACS Fornax Cluster Survey. V. Measurement and recalibration of surface area brightness changes and an accurate worth of the Fornax– Virgo relative range. Astrophys. J. 694

    Article, 556– 572 (2009 ).ADS

    Google Scholar

  • Guérou, A. et al. The Next Generation Virgo Cluster Survey. XII. Outstanding populations and kinematics of compact, low-mass early-type galaxies from Gemini GMOS-IFU spectroscopy. Astrophys. J. 804

    Article, 70 (2015 ).ADS

    Google Scholar

  • Côté, P. et al. The ACS Virgo Cluster Survey. I. Introduction to the study. Astrophys. J. Suppl. Ser. 153

    Article, 223– 242 (2004 ).ADS

    Google Scholar

  • Ford, H. C. et al. Advanced cam for the Hubble Space Telescope. https://doi.org/10.1117/12.459890 Proc. SPIE

  • (1998 ). Paudel, S., Lisker, T. & & Janz, J. Nuclei of early-type dwarf galaxies: are they progenitors of ultra-compact dwarf galaxies? Astrophys. J. Lett. 724

    Article, L64– L68 (2010 ).ADS

    Google Scholar

  • Mihos, J. C. et al. The range and dynamical history of the virgo cluster ultradiffuse galaxy vcc 615. Astrophys. J. 924

    Article, 87 (2022 ).ADS

    Google Scholar

  • Toloba, E. et al. The Next Generation Virgo Cluster Survey (NGVS). XXXV. Kinematical ideas of overly-massive dark matter halos in numerous ultra-diffuse galaxies in the Virgo Cluster. Astrophys. J. 951

    Article, 77 (2023 ).ADS Sánchez-Janssen, R. et al. The Next Generation Virgo Cluster Survey. XXIII. Basics of nuclear star clusters over 7 years in galaxy mass.
    Google Scholar
    Astrophys. J.

  • 878, 18 (2019 ). https://doi.org/10.1117/12.324464


  • Peng, C. Y. et al. In-depth structural decay of galaxy images. Astron. J

    Article 124ADS, 266– 293 (2002 ).
    Google Scholar


  • Peng, C. Y. et al. In-depth decay of galaxy images. II. Beyond axisymmetric designs. Astron. J

    Article 139ADS, 2097– 2129 (2010 ).
    Google Scholar


  • King, I. The structure of star clusters. I. an empirical density law. Astron. J

  • 67, 471 (1962 ).

    Article
    ADS Sersic, J. L.
    Google Scholar
    Atlas de Galaxias Australes

  • Vol. 1 (Observatorio Astronomico, 1968). Bradley, L. et al. astropy/photutils: 1.0.0. Zenodo (2020 ).

    Article Schwarz, G. Estimating the measurement of a design. ADS Ann. Stat.
    Google Scholar
    6

  • , 461– 464 (1978 ).

    Article
    ADS Häussler, B. et al. GEMS: galaxy fitting brochures and screening parametric galaxy fitting codes: GALFIT and GIM2D.
    Google Scholar
    Astrophys. J. Suppl. Ser.

  • 172, 615– 633 (2007 ).

    Article
    ADS Powalka, A. et al. The Next Generation Virgo Cluster Survey. XXV. Fiducial panchromatic colors of Virgo core globular clusters and their contrast to design forecasts.
    Google Scholar
    Astrophys. J. Suppl. Ser.

  • 227, 12 (2016 ).


  • https://doi.org/10.5281/zenodo.4044744 Akhlaghi, M. & & Ichikawa, T. Noise-based detection and division of ambiguous things.

  • Astrophys. J. Suppl. Ser. 220 , 1 (2015 ).

    Article
    MathSciNet
    MATH Bertin, E. & & Arnouts, S. SExtractor: software application for source extraction.
    Google Scholar
    Astrophys. J. Suppl. Ser.

  • 117, 393– 404 (1996 ).

    Article Johnston, K. V., Choi, P. I. & & Guhathakurta, P. Interpreting the morphology of scattered light around satellite galaxies. ADS Astron. J.
    Google Scholar
    124

  • , 127– 146 (2002 ).

    Article Bekki, K. & & Freeman, K. C. Formation of ADS ω
    Google Scholar
    Centauri from an ancient nucleated dwarf galaxy in the young stellar disc.

  • Mon. Not. R. Astron. Soc. 346 ,
    L11– L15( 2003).
    (* ).

    Article.ADS Jennings, Z. G. et al. NGC 3628-UCD1: a possible
    Google Scholar
    ω

  • Cen analog embedded in an excellent stream. Astrophys. J. Lett. 812, L10 (2015 ).

    Article

    Google Scholar

  • Hook, I. M. et al. The Gemini-North multi-object spectrograph: efficiency in imaging, long-Slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pac. 116

    Article, 425– 440 (2004 ).ADS

    Google Scholar

  • Prochaska, J. X. et al. PypeIt: the Python spectroscopic information decrease pipeline. J. Open Source Softw. 5 , 2308 (2020 ). Cappellari, M. & & Emsellem, E. Parametric healing of line-of-sight speed circulations from absorption-line spectra of galaxies by means of punished possibility.

    Article Publ. Astron. Soc. Pac.ADS 116
    Google Scholar
    , 138 (2004 ).



  • Cappellari, M. Improving the complete spectrum fitting technique: precise convolution with Gauss– Hermite functions. Mon. Not. R. Astron. Soc. 466

    Article, 798– 811 (2017 ).ADS

    Google Scholar


  • Stetson, P. B. DAOPHOT: a computer system program for crowded-field outstanding photometry. Publ. Astron. Soc. Pac.

    Article 99ADS, 191 (1987 ).
    Google Scholar


  • Jordán, A. et al. The ACS Virgo Cluster Survey. II. information decrease treatments. Astrophys. J. Suppl. Ser.

  • 154, 509– 517 (2004 ).

    Article
    ADS

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here